Have a personal or library account? Click to login
Some class of nonlinear inequalities with gradient constraints in Orlicz spaces Cover

Some class of nonlinear inequalities with gradient constraints in Orlicz spaces

By: S. Ajagjal and  D. Meskine  
Open Access
|Oct 2020

References

  1. [1] R. Adams, Sobolev spaces, Pure and Applied Mathematics, 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
  2. [2] A. Atlas, F. Karami and D.Meskine, The Perona-Malik inequality and application to image denoising, Nonlinear Anal. Real World Appl. 18 (2014), 57–68.10.1016/j.nonrwa.2013.11.006
  3. [3] A.Benkirane and A. Elmahi, Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Anal. 28 11 (1997), 1769–1784.
  4. [4] A. Elmahi and D. Meskine, Non-linear elliptic problems having natural growth and L1data in Orlicz spaces, Ann. Mat. Pura Appl. 184 2 (2005), 161–184.10.1007/s10231-004-0107-7
  5. [5] A. Elmahi and D. Meskine, Existence of solutions for elliptic equations having natural growth terms in Orlicz spaces, Abstr. Appl. Anal. 12 (2004), 1031–1045.10.1155/S1085337504403066
  6. [6] J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163–205.10.1090/S0002-9947-1974-0342854-2
  7. [7] J.-P. Gossez, Some approximation properties in Orlicz-Sobolev spaces, Studia Math. 74 1 (1982), 17–24.10.4064/sm-74-1-17-24
  8. [8] J.-P. Gossez, A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces, Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983), Proc. Sympos. Pure Math., 45, Part 1, Amer. Math. Soc., Providence, RI, (1986), 455–462.10.1090/pspum/045.1/843579
  9. [9] A. Kufner, O. John and S. Fucik, Function spaces, Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff International Publishing, Leyden; Academia, Prague, 1977.
  10. [10] M. Krasnosel’skii and Ya. Rutickii, Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen 1961.
  11. [11] Miranda, Fernando; Rodrigues, Jos Francisco; Santos, Lisa., Evolutionary quasi-variational and variational inequalities with constraints on the derivatives, Adv. Nonlinear Anal. 9 (2020), no. 1, 250–277.
  12. [12] L. Prigozhin, Variational model of sandpile growth, European J. Appl. Math. 7 3 (1996), 225–235.10.1017/S0956792500002321
  13. [13] J.-F. Rodrigues and L. Santos, A parabolic quasi-variational inequality arising in a superconductivity model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 1 (2000), 153–169.
Language: English
Page range: 281 - 302
Submitted on: Jun 15, 2020
Accepted on: Sep 30, 2020
Published on: Oct 10, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 S. Ajagjal, D. Meskine, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.