Have a personal or library account? Click to login
Certain integral transforms concerning the product of family of polynomials and generalized incomplete functions Cover

Certain integral transforms concerning the product of family of polynomials and generalized incomplete functions

Open Access
|Oct 2020

References

  1. [1] S.K.Q. Al-Omari, D. Baleanu and S.D. Purohit, Some results for Laplace-type integral operator in quantum calculus, Adv. Difference Equ., 2018 (2018), 124.10.1186/s13662-018-1567-1
  2. [2] A. Baricz, Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics, Vol. 1994, Springer, Berlin, Germany (2010).10.1007/978-3-642-12230-9
  3. [3] R.G. Buschman and H.M. Srivastava, The H-function associated with certain class of Feynman integral, J. Phys. A: Math. Gen., 23 (1990), 4707-4710.10.1088/0305-4470/23/20/030
  4. [4] J. Choi, R.K. Parmar and P. Chopra, The incomplete Srivastavas triple hypergeometric functions γHB and ΓHB, Filomat, 30 (2016), 17791787.10.2298/FIL1607779C
  5. [5] A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions, McGraw-Hill Book Company, New York, Toronto and London, Vols. I and II (1954).
  6. [6] A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Tables of Integral Transforms, McGraw-Hill Book Company, New York, Toronto and London, Vols. I and II (1954).
  7. [7] H. Exton, Multiple Hypergeometric Functions and Applications, Ellis Horwood, Chichester, UK (1976).
  8. [8] A.A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals. II: A generalisations of the H-function, J.Phys. A, 20 (1987), 4119-4128.10.1088/0305-4470/20/13/020
  9. [9] K. Jangid, S. Bhatter, S. Meena, D. Baleanu, M.A. Qurashi and S.D. Purohit, Some fractional calculus findings associated with the incomplete I-functions, Adv. Differ. Equ., 2020 (2020): 265.10.1186/s13662-020-02725-7
  10. [10] A.A. Kilbas and M. Saigo, H-Transforms: Theory and Applications, 9, CRC Press, London and New York (2004).
  11. [11] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York (2006).
  12. [12] A.M. Mathai and R.K. Saxena, The H-Function with Applications in Statistics and Other Disciplines, Wiley Eastern Limited New Delhi; John Wiley and Sons, New York (1978).
  13. [13] A.M. Mathai, R.K. Saxena and H.J. Haubold, The H-Functions: Theory and Applications Springer, New York (2010).
  14. [14] A.C. McBride, Fractional Calculus and Integral Transforms of Generalized Functions, Research Notes in Mathematics, Vol. 31, Pitman, London, UK (1979).
  15. [15] S. Meena, S. Bhatter, K. Jangid, and S.D. Purohit, Certain expansion formulae of incomplete H-functions associated with Leibniz rule, TWMS J. App. Eng. Math., (2020), Accepted.10.48185/jfcns.v2i1.231
  16. [16] R.K. Parmar and R.K. Saxena, The incomplete generalized τ-hypergeometric and second τ-Appell functions, J. Korean Math. Soc., 53 (2016), 363-379.10.4134/JKMS.2016.53.2.363
  17. [17] R.K. Parmar and R.K. Saxena, Incomplete extended Hurwitz-Lerch Zeta functions and associated properties, Commun. Korean Math. Soc., 32 (2017), 287-304.10.4134/CKMS.c150227
  18. [18] S.D. Purohit, Solutions of fractional partial differential equations of quantum mechanics, Adva. Appl. Math. Mech., 5(5) (2013), 639-651.10.4208/aamm.12-m1298
  19. [19] S.D. Purohit, A.M. Khan, D.L. Suthar and S. Dave, The impact on raise of environmental pollution and occurrence in biological populations pertaining to incomplete H-function, Natl. Acad. Sci. Lett., (2020). doi.org/10.1007/s40009-020-00996-y10.1007/s40009-020-00996-y
  20. [20] I.N. Sneddon, The Use of Integral Transforms, Tata McGraw-Hill, New Delhi (1979).
  21. [21] H. M. Srivastava, Certain properties of a generalized Whittaker transform, Math. Cluj, 10 (33) (1968), 385–390.
  22. [22] H. M. Srivastava, M.A. Chaudhry and R.P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms Spec. Funct., 23 (2012), 659–683.10.1080/10652469.2011.623350
  23. [23] H.M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science, Amsterdam, The Netherlands (2012).10.1016/B978-0-12-385218-2.00002-5
  24. [24] H.M. Srivastava, R.K. Saxena and R.K. Parmar, Some families of the incomplete H-functions and the incomplete ̄H-functions and associated integral transforms and operators of fractional calculus with applications, Russian J. Math. Phys., 25 (2018), 116-138.10.1134/S1061920818010119
  25. [25] R. Srivastava, R. Agarwal and S. Jain, A family of the incomplete hypergeometric functions and associated integral transform and fractional derivative formulas, Filomat, 31 (2017), 125-140.10.2298/FIL1701125S
  26. [26] R. Srivastava and N.E. Cho, Generating functions for a certain class of incomplete hypergeometric polynomials, Appl. Math. Comput., 219 (2012), 3219-3225.10.1016/j.amc.2012.09.059
  27. [27] D.L. Suthar, S.D. Purohit and K.S. Nisar, Integral transforms of the Galue type Struve function, TWMS J. Appl. & Eng. Math., 8(1) (2018), 114–121.
  28. [28] D.L. Suthar, A.M. Khan, A. Alaria, S.D. Purohit, J. Singh, Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus, AIMS Mathematics, 5(2) (2020), 1400–1410.10.3934/math.2020096
  29. [29] H.M. Srivastava, A contour integral involving Fox’s H-function, Indian J. Math., 14 (1972), 1–6.
Language: English
Page range: 243 - 254
Submitted on: May 13, 2020
Accepted on: Aug 20, 2020
Published on: Oct 2, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Sapna Meena, Sanjay Bhatter, Kamlesh Jangid, Sunil Dutt Purohit, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.