Have a personal or library account? Click to login
Topological degree methods for a Neumann problem governed by nonlinear elliptic equation Cover

Topological degree methods for a Neumann problem governed by nonlinear elliptic equation

Open Access
|Oct 2020

References

  1. [1] A. Abbassi, E. Azroul, A. Barbara, Degenerate p(x)-elliptic equation with second membre in L1. Advances in Science, Technology and Engineering Systems Journal. Vol. 2, No. 5 (2017), 45-54.10.25046/aj020509
  2. [2] A. Abbassi, C. Allalou and A. Kassidi, Existence of weak solutions for nonlinear p-elliptic problem by topological degree, Nonlinear Dyn. Syst. Theory, 20(3) (2020) 229-241.10.1007/s41808-021-00098-w
  3. [3] S. Aizicovici, N.S. Papageorgiou, V. Staicu, Nodal solutions for nonlinear nonhomogeneous Neumann equations, Topol. Methods Nonlinear Anal. 43 (2014) 421-438.10.12775/TMNA.2014.025
  4. [4] Y. Akdim, E. Azroul and A. Benkirane, Existence of solutions for quasilinear degenerate elliptic equations. Electronic Journal of Differential Equations (EJDE), 2001, vol. 2001, p. Paper No. 71, 19.
  5. [5] C. Atkinson and C. R. Champion, Some boundary value problems for the equation ∇.(| ∇ ϕ |N∇ ϕ) = 0, Quart. J. lllcch. Appl. Math. 37 (1984), 401-419.10.1093/qjmam/37.3.401
  6. [6] C. Atkinson and C. W. Jones, Similarity solutions in some non-linear diffusion problems and in boundary-layer flow of a pseudo plastic fluid, Quart. J. Mech. Appl. Malh. 27 (1974), 193-211.10.1093/qjmam/27.2.193
  7. [7] J. Baranger and K. Najib, Numerical analysis for quasi-Newtonian flow obeying the power Iaw or the Carreau law, Numer. Math. 58 (1990), 35-49.10.1007/BF01385609
  8. [8] J. Berkovits, Extension of the LeraySchauder degree for abstract Hammerstein type mappings. Journal of Differential Equations, 2007, vol. 234, no 1, p. 289-310.10.1016/j.jde.2006.11.012
  9. [9] G. Bonanno, G. D’Agui and A. Sciammetta. Nonlinear elliptic equations involving the p-laplacian with mixed Dirichlet-Neumann boundary conditions. Opuscula Mathematica, 2019, vol. 39, no 2.10.7494/OpMath.2019.39.2.159
  10. [10] F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N.S.), 9 (1983), 1-39.10.1090/S0273-0979-1983-15153-4
  11. [11] Y.J. Cho, and Y. Q. Chen. Topological degree theory and applications. Chapman and Hall/CRC, 2006.10.1201/9781420011487
  12. [12] P. Drabek, A. Kufner and F. Nicolosi, Non Linear Elliptic Equations, Singular and Degenerated Cases. University of West Bohemia, 1996.
  13. [13] P. Drabek, A. Kufner and V. Mustonen, Pseudo-monotonicity and degenerate or singular elliptic operators, Bull. Austral. Math. Soc. Vol. 58 (1998), 213-221.10.1017/S0004972700032184
  14. [14] M. Filippakis, N.S. Papageorgiou, Nodal solutions for Neumann problems with a nonhomogeneous differential operator, Funkcial. Ekvac. 56 (2013) 63-79.10.1619/fesi.56.63
  15. [15] J. P. Garca Azorero, and I. Peral Alonso, Existence and nonuniqueness for the p-Laplacian, Communications in Partial Differential Equations 12.12 (1987): 126-202.10.1080/03605308708820534
  16. [16] L. Gasiński, N.S. Papageorgiou, Multiple solutions for a class of nonlinear Neumann eigenvalue problems, Commun. Pure Appl. Anal. 13 (2014) 1491-151210.3934/cpaa.2014.13.1491
  17. [17] M. A. Hammou, E. Azroul and B. Lahmi, Existence of solutions for p(x)-Laplacian Dirichlet problem by topological degree, Bulletin of the Transilvania University of Brasov ffl Vol 11(60), No. 2-2018, Series III: Mathematics, Informatics, Physics, 29-38.
  18. [18] M. A. Hammou, E. Azroul and B. Lahmi, Topological degree methods for a Strongly nonlinear p(x)-elliptic problem. Revista Colombiana de Matemticas 53.1 (2019): 27-39.10.15446/recolma.v53n1.81036
  19. [19] A. Hirn, Approximation of the p-Stokes equations with equal-order finite elements, J. Math. Fluid Mech. 15 (2013) 65-88.10.1007/s00021-012-0095-0
  20. [20] S.C. Hu, N.S. Papageorgiou, Nonlinear Neumann problems with indefinite potential and concave terms, Commun. Pure Appl. Anal. 14 (2015) 2561 – 2616.10.3934/cpaa.2015.14.2561
  21. [21] T. He, Z. A. Yao and Z. Sun, Multiple and nodal solutions for parametric Neumann problems with nonhomogeneous differential operator and critical growth. Journal of Mathematical Analysis and Applications, 2017, vol. 449, no 2, p. 1133-1151.10.1016/j.jmaa.2016.12.020
  22. [22] B. Kawohl, On a family of torsional creep problems, J. R. Angew. Math. 410 (1990) 1-22.10.1515/crll.1990.410.1
  23. [23] I.S. Kim, A topological degree and applications to elliptic problems with discontinuous nonlinearity, J. Nonlinear Sci. Appl. 10, 612-624 (2017).10.22436/jnsa.010.02.24
  24. [24] J. Leray, J. Schauder, Topologie et quations fonctionnelles, Ann. Sci. Ec. Norm., 51 (1934), 45-7810.24033/asens.836
  25. [25] S. Liu, Existence of solutions to a superlinear p-Laplacian equation, Electron. J. Differential Equations 66.6 (2001).
  26. [26] Z. Liu, D. Motreanu, and S. Zeng. Positive solutions for nonlinear singular elliptic equations of p-Laplacian type with dependence on the gradient. Calculus of Variations and Partial Differential Equations 58.1 (2019): 28.10.1007/s00526-018-1472-1
  27. [27] S.E. Manouni, N.S. Papageorgiou, P. Winkert, Parametric nonlinear nonhomogeneous Neumann equations involving a nonhomogeneous differential operator, Monatsh. Math. 177 (2015) 203-233.10.1007/s00605-014-0649-8
  28. [28] D. Motreanu, V. V. Motreanu and N. Papageorgiou, Topological and variational methods with applications to nonlinear boundary value problems. Vol. 1. No. 7. New York: Springer, 2014.10.1007/978-1-4614-9323-5
  29. [29] J. R. Philip, N-diffusion, Aust. J. Phiys. 14 (1961), 1-13.10.1071/PH610001
  30. [30] M. Sabouri and M. Dehghan. A hk mortar spectral element method for the p-Laplacian equation. Computers and Mathematics with Applications 76.7 (2018): 1803-1826.10.1016/j.camwa.2018.07.031
  31. [31] I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Translated from the 1990 Russian original by Dan D. Pascali, Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, (1994).10.1090/mmono/139
  32. [32] I. V. Skrypnik, Nonlinear elliptic equations of higher order, (Russian) Gamoqeneb. Math. Inst. Sem. Mosen. Anotacie, 7 (1973), 51-52.
  33. [33] E. Zeider, Nonlinear Functional Analysis and its Applications, II\B : Nonlinear Monotone Operators, Springer, New York, 1990.
Language: English
Page range: 231 - 242
Submitted on: May 24, 2020
Accepted on: Aug 20, 2020
Published on: Oct 2, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Adil Abbassi, Chakir Allalou, Abderrazak Kassidi, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.