Have a personal or library account? Click to login
A new generalization of two refined Young inequalities and applications Cover

A new generalization of two refined Young inequalities and applications

By: M. A. Ighachane and  M. Akkouchi  
Open Access
|Oct 2020

References

  1. [1] M. Akkouchi and M. A. Ighachane, A new proof of a refined Young inequality, Bull. Int. Math. Virtual Inst,. Vol. 10(3) (2020), 425-428.
  2. [2] T. Ando, Matrix Young inequality, per. Theory Adv. Appl. 75,33-38(1995)10.1007/978-3-0348-9076-2_5
  3. [3] O. Hirzallah, and F. Kittaneh, Matrix Young inequalities for the Hilbert-Schmidt norm, Linear Algebra Appl. 308(2000) 77-84.10.1016/S0024-3795(99)00270-0
  4. [4] S. Furuichi, On refined Young inequalities and reverse inequalities, J. Math. Inequal. 5(2011) 21-30.10.7153/jmi-05-03
  5. [5] F. Kittaneh, Norm inequalities for fractionl powers of posetive operators, Lett. Math. Phys. 27,279-28510.1007/BF00777375
  6. [6] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ, Res. Inst, Math, Sci, 24(1998), 283-203.10.2977/prims/1195175202
  7. [7] F. Kittaneh, and Y. Manasrah, A generalization of two refined Young inequalities, Positivity 19(2015) 757-768.10.1007/s11117-015-0326-8
  8. [8] F. Kittaneh, and Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl. 36(2010) 292-269.10.1016/j.jmaa.2009.08.059
  9. [9] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 1988.
  10. [10] T. Kato Notes on some inequalities for linear operators,Math Ann. 1952; 125:208-212.10.1007/BF01343117
  11. [11] C. A. McCarthy, cp, Israel, J. Math. 5 (1967), 249-271. Horn, R. A., Johnson, C.R, Matrix analysis, Cambridge Univ. Press, New-York, (1985).10.1007/BF02771613
  12. [12] M. Sattari, M.S. Moslehian, K. Shebrawi, Extension of Euclidean operator radius inequalities, Math. Scand. (2016), in press, arXive: 1502.00083.10.7146/math.scand.a-25509
  13. [13] A. Sheikhhosseini, K. Shebrawi and M.S. Moslehian, inequalities for generalized Euclidean operator radius via Young’s inequality, J. Math. Anal. Appl 445 (2017) 1516-1529.10.1016/j.jmaa.2016.03.079
  14. [14] S. Tafazoli, HR. Moradi, and S. Furuichi, Further inequalities for the numerical radius oh hilbert space operators, J. Math. Ineq. 13(2019). DOI:a0.7153/jmi-2019-13-68.
Language: English
Page range: 155 - 167
Submitted on: Jun 1, 2020
Accepted on: Jul 10, 2020
Published on: Oct 2, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 M. A. Ighachane, M. Akkouchi, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.