[1] A. Aberqi, J. Bennouna, M. Mekkour and H. Redwane, Nonlinear parabolic inequalities with lower order terms, Applicable Analysis(2016), DOI: <a href="https://doi.org/10.1080/00036811.2016.120518610.1080/00036811.2016.1205186" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00036811.2016.120518610.1080/00036811.2016.1205186</a>
[4] E. Azroul, H. Hjiaj and B. Lahmi, Existence of entropy solutions for some strongly nonlinear p(x) -parabolic problems with L1-data, An. Univ. Craiova Ser. Mat. Inform. 42(2) (2015) 273-299.
[6] Ph. Bénilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre, J.L. Vazquez, An L1 theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 22, 241-273, (1995)
[7] D. Blanchard, F. Murat, Renormalized solutions of nonlinear parabolic with L1 data: existence and uniqueness. Proc. Roy. Soc. Edinburgh Sect, A 127, pp. 1137-1152, 1997.
[8] L. Boccardo, D. Giachetti, J.-I. Diaz, F. Murat, Existence and regularity of renormalized solutions of some elliptic problems involving derivatives of nonlinear terms. Journal of differential equations 106, pp. 215-237, 1993.<a href="https://doi.org/10.1006/jdeq.1993.1106" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jdeq.1993.1106</a>
[9] M. Bendahmane, P. Wittbold, A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data. J. Differential Equation. 249, pp. 483-515 (2010).
[10] D. Blanchard, F. Murat, H. Redwane, Existence and uniqueness of renormalized solution for fairly general class of non linear parabolic problems, J.Differential Equations.No. 177, 331-374, 2001.<a href="https://doi.org/10.1006/jdeq.2000.4013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jdeq.2000.4013</a>
[11] D. Blanchard, H. Redwane, Renormalized solutions for class of nonlinear evolution problems, J. Math. Pure. 77, pp. 117-151, 1998.<a href="https://doi.org/10.1016/S0021-7824(98)80067-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0021-7824(98)80067-6</a>
[12] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006) 1383–1406.<a href="https://doi.org/10.1137/050624522" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1137/050624522</a>
[13] G. Dal Maso, F. Murat, L. Orsina, and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuala Norm. Sup. Pisa Cl.Sci. (4), 28, (1999), 741808.
[14] T. Del Vecchio, M. R. Posteraro, An existence result for nonlinear and noncoercive problems. Nonlinear Anal., 31(1-2); 191–206, (1998).<a href="https://doi.org/10.1016/S0362-546X(96)00304-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0362-546X(96)00304-5</a>
[15] R.-J. Diperna, P.-L. Lions:On the Cauchy Problem for the Boltzmann Equations: Global existence and weak stability, ann. of Math. 130, pp. 285-366, 1989.<a href="https://doi.org/10.2307/1971423" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/1971423</a>
[18] B. Elhamdaoui, J. Bennouna, A. Aberqi, Renormalized Solutions for Nonlinear Parabolic Systems in the Lebesgue Sobolev Spaces with Variable Exponents Journal of Mathematical Physics, Analysis, Geometry 2018, Vol. 14, No. 1, pp. 1-2610.15407/mag14.01.027
[21] R. Landes: On the existence of weak solutions for quasilinear parabolic initial-boundary problems, Proc. Roy. Soc. Edinburgh Sect. A89, pp. 321-366, 1981.<a href="https://doi.org/10.1017/S0308210500020242" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S0308210500020242</a>
[26] A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of trauncations, Ann. Mat. Pura ed Applicata, 177, pp. 143-172, (1999).<a href="https://doi.org/10.1007/BF02505907" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF02505907</a>
[27] H. Redwane, Existence of Solution for a class of a parabolic equation with three unbounded nonlinearities, Adv. Dyn. Syt. A2PL. 2, pp. 241-264, 2007.
[28] J.-M. Rakotoson, Resolution of the critical cases for the problems with L1 data, Asymptotic Analysis when right hand side is in L1(Ω). 6, pp. 285-293, 1993.<a href="https://doi.org/10.3233/ASY-1993-6305" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3233/ASY-1993-6305</a>
[31] J. Simon, Compact set in the space Lp(0, T, B), Ann. Mat. Pura, Appl. 146, pp. 65-96, (1987).<a href="https://doi.org/10.1007/BF01762360" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF01762360</a>
[32] P. Wittbold, A. Zimmermann, Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and L1data, Nonlinear Anal. 72 (2010) 2990–300810.1016/j.na.2009.11.041
[34] V.V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004) 67–81.
[35] L. Boccardo, D. Giachetti, J. I. Diaz and F. Murat, Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms. J. Differential Equations 106, no. 2, 215237, (1993).<a href="https://doi.org/10.1006/jdeq.1993.1106" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jdeq.1993.1106</a>
[36] A. DallAglio, Approximated solutions of equations with L1 data. Application to the Hconvergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. (4) 170, 207240, (1996).<a href="https://doi.org/10.1007/BF01758989" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF01758989</a>