Have a personal or library account? Click to login
On some nonlinear parabolic equations with variable exponents and measure data Cover

On some nonlinear parabolic equations with variable exponents and measure data

Open Access
|May 2020

References

  1. [1] A. Aberqi, J. Bennouna, M. Mekkour and H. Redwane, Nonlinear parabolic inequalities with lower order terms, Applicable Analysis(2016), DOI: <a href="https://doi.org/10.1080/00036811.2016.120518610.1080/00036811.2016.1205186" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00036811.2016.120518610.1080/00036811.2016.1205186</a>
  2. [2] A. Almeida, P. Hasto, Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258 no. 5, 162-165 (2010).
  3. [3] A. Almeida, P. Hasto, Interpolation in variable exponent spaces, to appear in Rev. Mat. Complut.
  4. [4] E. Azroul, H. Hjiaj and B. Lahmi, Existence of entropy solutions for some strongly nonlinear p(x) -parabolic problems with L1-data, An. Univ. Craiova Ser. Mat. Inform. 42(2) (2015) 273-299.
  5. [5] M. Bendahmane, P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and L1data, Nonlinear Anal. 70 (2) (2009) 567–583.<a href="https://doi.org/10.1016/j.na.2007.12.027" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.na.2007.12.027</a>
  6. [6] Ph. Bénilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre, J.L. Vazquez, An L1 theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 22, 241-273, (1995)
  7. [7] D. Blanchard, F. Murat, Renormalized solutions of nonlinear parabolic with L1 data: existence and uniqueness. Proc. Roy. Soc. Edinburgh Sect, A 127, pp. 1137-1152, 1997.
  8. [8] L. Boccardo, D. Giachetti, J.-I. Diaz, F. Murat, Existence and regularity of renormalized solutions of some elliptic problems involving derivatives of nonlinear terms. Journal of differential equations 106, pp. 215-237, 1993.<a href="https://doi.org/10.1006/jdeq.1993.1106" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jdeq.1993.1106</a>
  9. [9] M. Bendahmane, P. Wittbold, A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data. J. Differential Equation. 249, pp. 483-515 (2010).
  10. [10] D. Blanchard, F. Murat, H. Redwane, Existence and uniqueness of renormalized solution for fairly general class of non linear parabolic problems, J.Differential Equations.No. 177, 331-374, 2001.<a href="https://doi.org/10.1006/jdeq.2000.4013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jdeq.2000.4013</a>
  11. [11] D. Blanchard, H. Redwane, Renormalized solutions for class of nonlinear evolution problems, J. Math. Pure. 77, pp. 117-151, 1998.<a href="https://doi.org/10.1016/S0021-7824(98)80067-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0021-7824(98)80067-6</a>
  12. [12] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006) 1383–1406.<a href="https://doi.org/10.1137/050624522" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1137/050624522</a>
  13. [13] G. Dal Maso, F. Murat, L. Orsina, and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuala Norm. Sup. Pisa Cl.Sci. (4), 28, (1999), 741808.
  14. [14] T. Del Vecchio, M. R. Posteraro, An existence result for nonlinear and noncoercive problems. Nonlinear Anal., 31(1-2); 191–206, (1998).<a href="https://doi.org/10.1016/S0362-546X(96)00304-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0362-546X(96)00304-5</a>
  15. [15] R.-J. Diperna, P.-L. Lions:On the Cauchy Problem for the Boltzmann Equations: Global existence and weak stability, ann. of Math. 130, pp. 285-366, 1989.<a href="https://doi.org/10.2307/1971423" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/1971423</a>
  16. [16] R. Di Nardo, F. Fo, O. Guib, Existence result for nonlinear parabolic equations with lower order terms. Anal. Appl. 9(2), 161186 (2011).
  17. [17] R. Di Nardo, A. Perrotta, Uniquness results for nonlinear elliptic problems ith two lowers order terms. Bull. Sci. Math. 137, 107128 (2013).
  18. [18] B. Elhamdaoui, J. Bennouna, A. Aberqi, Renormalized Solutions for Nonlinear Parabolic Systems in the Lebesgue Sobolev Spaces with Variable Exponents Journal of Mathematical Physics, Analysis, Geometry 2018, Vol. 14, No. 1, pp. 1-2610.15407/mag14.01.027
  19. [19] X.L. Fan, D. Zhao, On the spaces Lp(.)and Wm,p(.), J. Math. Anal. Appl. 263 (2001)424-446.<a href="https://doi.org/10.1006/jmaa.2000.7617" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jmaa.2000.7617</a>
  20. [20] X.L Fan, D. Zhao. the generalised Orlicz-Sobolev space Wk,p(x)(Ω). J. Gansu Educ, College 12(1)1998, 1-6.
  21. [21] R. Landes: On the existence of weak solutions for quasilinear parabolic initial-boundary problems, Proc. Roy. Soc. Edinburgh Sect. A89, pp. 321-366, 1981.<a href="https://doi.org/10.1017/S0308210500020242" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S0308210500020242</a>
  22. [22] J.-L. Lions, Quelques méthodes de resolution des problémes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969.
  23. [23] P. Harjulehto. Variable exponent Sobolev space with zero boundary values. Math. Bohem.132(2007)125-136.
  24. [24] O. Kovacik, J. Rakonsik, on space Lp(x)(Ω) and W1,p(x)(Ω). czechoslovak Math J. 41(116)1991592-618.
  25. [25] L. Nirenberg, On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, 13, 116-162, (1959).
  26. [26] A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of trauncations, Ann. Mat. Pura ed Applicata, 177, pp. 143-172, (1999).<a href="https://doi.org/10.1007/BF02505907" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF02505907</a>
  27. [27] H. Redwane, Existence of Solution for a class of a parabolic equation with three unbounded nonlinearities, Adv. Dyn. Syt. A2PL. 2, pp. 241-264, 2007.
  28. [28] J.-M. Rakotoson, Resolution of the critical cases for the problems with L1 data, Asymptotic Analysis when right hand side is in L1(Ω). 6, pp. 285-293, 1993.<a href="https://doi.org/10.3233/ASY-1993-6305" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3233/ASY-1993-6305</a>
  29. [29] H. Redwane, Solution renormalisé de problémes paraboliques et elliptiques non linéaires. Ph.D., Rouen 1997
  30. [30] O. Kováčik and j.Rákosnĭk On spaces Lp(x)and W1,p(x), Czechoslovak Math, J. 41 (116) (1991) 592–618.<a href="https://doi.org/10.21136/CMJ.1991.102493" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.21136/CMJ.1991.102493</a>
  31. [31] J. Simon, Compact set in the space Lp(0, T, B), Ann. Mat. Pura, Appl. 146, pp. 65-96, (1987).<a href="https://doi.org/10.1007/BF01762360" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF01762360</a>
  32. [32] P. Wittbold, A. Zimmermann, Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and L1data, Nonlinear Anal. 72 (2010) 2990–300810.1016/j.na.2009.11.041
  33. [33] V. V. Zhikov, On Lavrentiev’s phenomenon, Russian Journal of Mathematical Physics, 3, 249-269, (1994).
  34. [34] V.V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004) 67–81.
  35. [35] L. Boccardo, D. Giachetti, J. I. Diaz and F. Murat, Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms. J. Differential Equations 106, no. 2, 215237, (1993).<a href="https://doi.org/10.1006/jdeq.1993.1106" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jdeq.1993.1106</a>
  36. [36] A. DallAglio, Approximated solutions of equations with L1 data. Application to the Hconvergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. (4) 170, 207240, (1996).<a href="https://doi.org/10.1007/BF01758989" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF01758989</a>
  37. [37] F. Murat, Solutions renormalizadas de edp elipticas no lineales. Publ. Laboratoire dAnalyse Numrique, Univ. Paris 6, R 93023, (1993).
Language: English
Page range: 93 - 117
Submitted on: Feb 25, 2020
Accepted on: Apr 25, 2020
Published on: May 29, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2020 Bouchra El Hamdaoui, Jaouad Bennouna, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.