[4] Y. J. Bagul and C. Chesneau, Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions, Cubo. A Mathematical Journal, 21(1)2019, 21-25.<a href="https://doi.org/10.4067/S0719-06462019000100021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4067/S0719-06462019000100021</a>
[6] Y. J. Bagul and C. Chesneau, Two double sided inequalities involving sinc and hyperbolic sinc functions, Int. J. Open Problems Compt. Math., 12(4)2019, 15-20.
[7] C. Barbu and L-I. Piscoran, Jordan type inequalities using monotony of functions, J. Math. Inequal., 8(1)2014, 83-89.<a href="https://doi.org/10.7153/jmi-08-04" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.7153/jmi-08-04</a>
[9] A. Baricz, B. A. Bhayo and M. Vuorinen, Turan Type Inequalities for Generalized Inverse Trigonometric Functions, Filomat, 29(2)2015, 303-313.<a href="https://doi.org/10.2298/FIL1502303B" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2298/FIL1502303B</a>
[11] B. A. Bhayo and J. Sandor, Inequalities connecting generalized trigonometric functions with their inverses, Probl. Anal. Issues Anal., 2(20)2013, 82-90.<a href="https://doi.org/10.15393/j3.art.2013.2385" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15393/j3.art.2013.2385</a>
[12] B. A. Bhayo and J. Sandor, New trigonometric and hyperbolic inequalities, Miskolc Math. Notes, 18(1)2017, 125-137.<a href="https://doi.org/10.18514/MMN.2017.1560" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.18514/MMN.2017.1560</a>
[13] B. A. Bhayo and M. Vuorinen, On generalized trigonometric functions with two parameters, J. Approx. Theory, 164(10)2012, 1415-1426.<a href="https://doi.org/10.1016/j.jat.2012.06.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jat.2012.06.003</a>
[14] G. Bercu and S. Wu, Refinements of certain hyperbolic inequalities via the Pade approximation method, J. Nonlinear Sci. Appl., 9(7)2016, 5011-5020.<a href="https://doi.org/10.22436/jnsa.009.07.05" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.22436/jnsa.009.07.05</a>
[16] P. J. Bushell and D. E. Edmunds, Remarks on generalized trigonometric functions, Rocky Mountain J. Math., 42(1)2012, 25-57.<a href="https://doi.org/10.1216/RMJ-2012-42-1-25" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1216/RMJ-2012-42-1-25</a>
[17] D. E. Edmunds, P. Gurka and J. Lang, Properties of generalized trigonometric functions, J. Approx. Theory, 164(1)2012, 47-56.<a href="https://doi.org/10.1016/j.jat.2011.09.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jat.2011.09.004</a>
[18] W. B. Gearhart and H. S. Shultz, The Functionsinxx{{\sin x} \over x}, College Math. J., 21(2)1990, 90-99.<a href="https://doi.org/10.1080/07468342.1990.11973290" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/07468342.1990.11973290</a>
[19] L-G. Huang, L. Yin, Y-L. Wang and X-L. Lin, Some Wilker and Cusa type inequalities for generalized trigonometric and hyperbolic functions, J. Inequal. Appl., 2018(52)2018, 1-8.<a href="https://doi.org/10.1186/s13660-018-1644-8583459729527103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s13660-018-1644-8583459729527103</a>
[20] W-D. Jiang, M-K. Wang, Y-M. Chu, Y-P. Jiang and F. Qi, Convexity of the generalized sine function and the generalized hyperbolic sine function, J. Approx. Theory, 1742013, 1-9.<a href="https://doi.org/10.1016/j.jat.2013.06.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jat.2013.06.005</a>
[21] R. Klen, M. Visuri and M. Vuorinen, On Jordan Type Inequalities for Hyperbolic Functions, J. Inequal. Appl., 20102010, 1-14. Article ID 362548.<a href="https://doi.org/10.1155/2010/362548" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2010/362548</a>
[22] R. Klen, M. Vuorinen and X. Zhang, Inequalities for the generalized trigonometric and hyperbolic functions, J. Math. Anal. Appl., 409(1)2014, 521-529.<a href="https://doi.org/10.1016/j.jmaa.2013.07.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jmaa.2013.07.021</a>
[24] Y. Lv, G.Wang and Y. Chu, A note on Jordan type inequalities for hyperbolic functions, Appl. Math. Lett., 25(3)2012, 505-508.<a href="https://doi.org/10.1016/j.aml.2011.09.046" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.aml.2011.09.046</a>
[26] K. Nantomah, C. A. Okpoti and S. Nasiru, On a Generalized Sigmoid Function and its Properties, Asian Journal of Mathematics and Applications, 20202020, 1-11. Article ID ama0527.
[27] E. Neuman, Refinements and generalizations of certain inequalities involving trigonometric and hyperbolic functions, Adv. Inequal. Appl., 1(1)2012, 1-11.
[29] E. Neuman and J. Sandor, On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities, Math. Inequal. Appl., 13(4)2010, 715-723.<a href="https://doi.org/10.7153/mia-13-50" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.7153/mia-13-50</a>
[31] C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl., 2(2)2000, 155-167.<a href="https://doi.org/10.7153/mia-03-19" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.7153/mia-03-19</a>
[33] F. Qi, D-W. Niu and B-N. Guo, Refinements, Generalizations, and Applications of Jordans Inequality and Related Problems, J. Inequal. Appl., 20092009,1-52. Article ID 271923.<a href="https://doi.org/10.1155/2009/271923" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2009/271923</a>
[34] B. Ravi and A. V. Laxmi, Subadditive and completely monotonic properties of the tricomi confluent hypergeometric functions, International Journal of Advances in Mathematics, 2018(5)2018, 25-33.
[35] J. Sánchez-Reyes, The Hyperbolic Sine Cardinal and the Catenary, College Math. J., 43(4)2012, 285-290.<a href="https://doi.org/10.4169/college.math.j.43.4.285" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4169/college.math.j.43.4.285</a>
[36] J. Sandor and B. A. Bhayo, On an Inequality of Redheffer, Miskolc Math. Notes, 16(1)2015, 475-482.<a href="https://doi.org/10.18514/MMN.2015.1261" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.18514/MMN.2015.1261</a>
[37] Y-Q. Song, Y-M. Chu, B-Y. Liu and M-K. Wang, A note on generalized trigonometric and hyperbolic functions, J. Math. Inequal., 8(3)2014, 635-642.<a href="https://doi.org/10.7153/jmi-08-46" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.7153/jmi-08-46</a>
[38] S. Takeuchi, Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian, J. Math. Anal. Appl., 385(1)2012, 24-35.<a href="https://doi.org/10.1016/j.jmaa.2011.06.063" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jmaa.2011.06.063</a>
[39] S. Takeuchi, Multiple-angle formulas of generalized trigonometric functions with two parameters, J. Math. Anal. Appl., 444(2)2016, 1000-1014.<a href="https://doi.org/10.1016/j.jmaa.2016.06.074" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jmaa.2016.06.074</a>
[41] Z-H. Yang and Y-M Chu, Jordan Type Inequalities for Hyperbolic Functions and Their Applications, J. Funct. Spaces, 20152015, 1-4. Article ID 370979.<a href="https://doi.org/10.1155/2015/370979" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2015/370979</a>
[42] L. Yin and L-G. Huang, Some inequalities for the generalized sine and the generalized hyperbolic sine, J. Class. Anal., 3(1)2013, 85-90.<a href="https://doi.org/10.7153/jca-03-07" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.7153/jca-03-07</a>
[43] L. Yin, L-G. Huang and F. Qi, Some Inequalities for the Generalized Trigonometric and Hyperbolic Functions, Turkish Journal of Analysis and Number Theory, 2(3)2014, 96-101.<a href="https://doi.org/10.12691/tjant-2-3-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.12691/tjant-2-3-8</a>
[44] L. Yin, L-G. Huang and F. Qi, Inequalities for the generalized trigonometric and hyperbolic functions with two parameters, J. Nonlinear Sci. Appl., 8(4)2015, 315-323.<a href="https://doi.org/10.22436/jnsa.008.04.04" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.22436/jnsa.008.04.04</a>
[45] L. Yin, L-G. Huang, Y-L. Wang and X-L. Lin, A survey for generalized trigonometric and hyperbolic functions, J. Math. Inequal., 13(3)2019, 833-854.<a href="https://doi.org/10.7153/jmi-2019-13-58" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.7153/jmi-2019-13-58</a>
[47] T-Y. Zhang, A-P. Ji and F. Qi, On Integral Inequalities of Hermite-Hadamard Type for s-Geometrically Convex Functions, Abstr. Appl. Anal., 2012 (2012), 1-14. Article ID 560586.
[48] L. Zhang and X. Ma, New Polynomial Bounds for Jordans and Kobers Inequalities Based on the Interpolation and Approximation Method, Mathematics,7(8)(2019), 1-9.<a href="https://doi.org/10.3390/math7080746" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/math7080746</a>