Have a personal or library account? Click to login
On the limit cycles for a class of eighth-order differential equations Cover

On the limit cycles for a class of eighth-order differential equations

Open Access
|May 2020

References

  1. [1] A. Buica, J. P. Françoise, and J. Llibre, Periodic solutions of nonlinear periodic differential systems with a small parameter, Comm. Pure Appl. Anal. 6 2006, pp. 103-111, doi: <a href="https://doi.org/10.3934/cpaa.2007.6.103.10.3934/cpaa.2007.6.103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3934/cpaa.2007.6.103.10.3934/cpaa.2007.6.103</a>
  2. [2] S. Ballem, K.N.S. Kasi Viswanadham, Numerical Solution of Eighth Order Boundary Value Problems by Galerkin Method with Septic B-splines. Procedia Eng. 2015, 127, 1370–1377.
  3. [3] E. Esmailzadeh, M. Ghorashi, B. Mehri. Periodic behavior of a nonlinear dynamical system. Nonlinear Dynam., 1995, 7: 335 - 344, doi: <a href="https://doi.org/10.1007/BF00046307.10.1007/BF00046307" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF00046307.10.1007/BF00046307</a>
  4. [4] J.R. Graef, J. Henderson, B. Yang, Positive Solutions for a Nonlinear Higher-Order Boundary Value Problems. Electron. J. Diff. Equ. 2007, 45, 1–10.
  5. [5] X. Liu, W. Jiang, Y. Guo, Multi-Point Boundary Value Problems For Higher Order Differential Equations. Appl. Math. E-Notes 2004, 4, 106–113.
  6. [6] A. Makhlouf, C.E. Berhail. Limit cycles of the sixth-order non-autonomous differential equation. Arab. J. Math. Sci., 2012, 18: 177 - 187, doi: <a href="https://doi.org/10.1016/j.ajmsc.2012.03.003.10.1016/j.ajmsc.2012.03.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ajmsc.2012.03.003.10.1016/j.ajmsc.2012.03.003</a>
  7. [7] I. G. Malkin, Some Problems of the theory of nonlinear oscillations, Gosudarstv. Izdat. Tehn-Teor. Lit. Moscow, 1956 (in Russian).
  8. [8] M.A. Noor, S.T. Mohyud-Din, Variational Iteration Decomposition Method for Solving Eighth-Order Boundary Value Problems. Diff. Equ. Nonlinear Mech. (2007), doi: <a href="https://doi.org/10.1155/2007/19529.10.1155/2007/19529" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2007/19529.10.1155/2007/19529</a>
  9. [9] M.G. Porshokouhi, B. Ghanbari, M. Gholami, M. Rashidi, Numerical Solution of Eighth Order Boundary Value Problems with Variational Iteration Method. Gen. Math. Notes 2011, 2, 128–133.
  10. [10] S. M. Reddy, Numerical Solution of Eighth Order Boundary Value Problems by Petrov-Galerkin Method with Quintic B-splines as basic functions and Septic B-Splines as weight functions. Int. J. Eng. Comput. Sci. 2016, 5, 17902–17908.
  11. [11] M. Roseau, Vibrations non linéaires et thérie de la stablité, Springer Tracts in Natural Philosophy, Vol. 8, Springer, New York, 1985.
  12. [12] J. A. Sanders, F. Verhulst Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences 59, Springer, 1985.<a href="https://doi.org/10.1007/978-1-4757-4575-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-4757-4575-7</a>
  13. [13] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext, Springer, New York, 1996.<a href="https://doi.org/10.1007/978-3-642-61453-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-61453-8</a>
  14. [14] X. Xu, F. Zhou, Numerical Solutions for the Eighth-Order Initial and Boundary Value Problems Using the Second Kind Chebyshev Wavelets. Adv. Math. Phys. 2015, 964623. 3, doi:<a href="https://doi.org/10.1155/2015/964623.10.1155/2015/964623" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2015/964623.10.1155/2015/964623</a>
Language: English
Page range: 53 - 61
Submitted on: Feb 13, 2020
Accepted on: Apr 9, 2020
Published on: May 29, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2020 Chems Eddine Berrehail, Zineb Bouslah, Amar Makhlouf, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.