[2] V. Ambrosion, Nontrivial solutions for a fractional p-Laplacian problem via Rabier Theorem. Journal of Complex Variables and Elliptic Equation, Volume 62, 2017, 838-847.<a href="https://doi.org/10.1080/17476933.2016.1245725" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17476933.2016.1245725</a>
[3] E. Azroul, A. Benkirane, M.Srati, Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces, Adv. Oper. Theory (2020) doi: <a href="https://doi.org/10.1007/s43036-020-00042-0.10.1007/s43036-020-00042-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s43036-020-00042-0.10.1007/s43036-020-00042-0</a>
[5] E. Azroul, A. Benkirane, M. Shimi and M. Srati, On a class of fractional p(x)-Kirchhoff type problems. Applicable Analysis (2019) doi: <a href="https://doi.org/10.1080/00036811.2019.1603372.10.1080/00036811.2019.1603372" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00036811.2019.1603372.10.1080/00036811.2019.1603372</a>
[6] E. Azroul, A. Benkirane and M. Srati, Three solutions for Kirchhoff problem involving the nonlocal fractional p-Laplacian. Adv. Oper. Theory (2019) doi: <a href="https://doi.org/10.15352/AOT.1901-1464.10.15352/aot.1901-1464" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15352/AOT.1901-1464.10.15352/aot.1901-1464</a>
[7] E. Azroul, A. Benkirane, A. Boumazourh and M. Srati, Three solutions for a nonlocal fractional p-Kirchhoff Type elliptic system. Applicable Analysis (2019) doi: <a href="https://doi.org/10.1080/00036811.2019.1670347.10.1080/00036811.2019.1670347" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00036811.2019.1670347.10.1080/00036811.2019.1670347</a>
[8] E. Azroul, A. Boumazourh and M. Srati, On a positive weak solutions for a class of weighted (p(.), q(.))−Laplacian systems. Moroccan J. of Pure and Appl. Anal. (MJPAA) doi: <a href="https://doi.org/10.2478/mjpaa-2019-0010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/mjpaa-2019-0010</a> (2020) 125-13910.2478/mjpaa-2019-0010
[9] E. Azroul, M. Shimi, Nonlocal eigenvalue problems with variable exponent, Moroccan J. of Pure and Appl. Anal, Volume 4(1), 2018, Pages 46-61, DOI <a href="https://doi.org/10.1515/mjpaa-2018-000610.1515/mjpaa-2018-0006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/mjpaa-2018-000610.1515/mjpaa-2018-0006</a>
[10] E. Azroul, A. Benkirane and M. Srati, Three solutions for a Schrödinger-Kirchhoff type equation involving nonlocal fractional integro-defferential operators J. Pseudo-Differ. Oper. Appl. (2020). <a href="https://doi.org/10.1007/s11868-020-00331-5.10.1007/s11868-020-00331-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11868-020-00331-5.10.1007/s11868-020-00331-5</a>
[11] E. Azroul, A. Benkirane and M. Shimi, Existence and Multiplicity of solutions for fractional p(x,.)-Kirchhoff type problems in ℝN, Applicable Analysis, (2019), DOI:<a href="https://doi.org/10.1080/00036811.2019.1673373.10.1080/00036811.2019.1673373" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00036811.2019.1673373.10.1080/00036811.2019.1673373</a>
[13] Y. Chen, S. Levine, M. Rao, Variable exponent linear growth functionals in image processing, SIAM J. Appl. Math., 66 (2006), 1383-1406.<a href="https://doi.org/10.1137/050624522" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1137/050624522</a>
[14] F.Demengel ans G. Demengel Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer (2012).<a href="https://doi.org/10.1007/978-1-4471-2807-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-4471-2807-6</a>
[19] M. A. Krasnosel’skii and Ja. B. Rutickii, Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961. MR 0126722.
[20] J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459-466.<a href="https://doi.org/10.2140/pjm.1958.8.459" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2140/pjm.1958.8.459</a>
[21] E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. 49 (2014) 795-826.<a href="https://doi.org/10.1007/s00526-013-0600-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00526-013-0600-1</a>
[23] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. MR 2944369.<a href="https://doi.org/10.1016/j.bulsci.2011.12.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bulsci.2011.12.004</a>
[24] H. Qiu and M. Xiang; Existence of solutions for fractional p-Laplacian problems via Leray-Schauders nonlinear alternative; Boundary Value Problems (2016) DOI <a href="https://doi.org/10.1186/s13661-016-0593-810.1186/s13661-016-0593-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s13661-016-0593-810.1186/s13661-016-0593-8</a>