Have a personal or library account? Click to login
Leray-Schauder’s solution for a nonlocal problem in a fractional Orlicz-Sobolev space Cover

Leray-Schauder’s solution for a nonlocal problem in a fractional Orlicz-Sobolev space

Open Access
|May 2020

References

  1. [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
  2. [2] V. Ambrosion, Nontrivial solutions for a fractional p-Laplacian problem via Rabier Theorem. Journal of Complex Variables and Elliptic Equation, Volume 62, 2017, 838-847.<a href="https://doi.org/10.1080/17476933.2016.1245725" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17476933.2016.1245725</a>
  3. [3] E. Azroul, A. Benkirane, M.Srati, Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces, Adv. Oper. Theory (2020) doi: <a href="https://doi.org/10.1007/s43036-020-00042-0.10.1007/s43036-020-00042-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s43036-020-00042-0.10.1007/s43036-020-00042-0</a>
  4. [4] E. Azroul, A. Benkirane, M. Shimi, Eigenvalue problems involving the fractional p(x)-Laplacian operator. Adv. Oper. Theory 4 (2019), no. 2, 539–555. doi:<a href="https://doi.org/10.15352/aot.1809-1420.10.15352/aot.1809-1420" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15352/aot.1809-1420.10.15352/aot.1809-1420</a>
  5. [5] E. Azroul, A. Benkirane, M. Shimi and M. Srati, On a class of fractional p(x)-Kirchhoff type problems. Applicable Analysis (2019) doi: <a href="https://doi.org/10.1080/00036811.2019.1603372.10.1080/00036811.2019.1603372" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00036811.2019.1603372.10.1080/00036811.2019.1603372</a>
  6. [6] E. Azroul, A. Benkirane and M. Srati, Three solutions for Kirchhoff problem involving the nonlocal fractional p-Laplacian. Adv. Oper. Theory (2019) doi: <a href="https://doi.org/10.15352/AOT.1901-1464.10.15352/aot.1901-1464" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15352/AOT.1901-1464.10.15352/aot.1901-1464</a>
  7. [7] E. Azroul, A. Benkirane, A. Boumazourh and M. Srati, Three solutions for a nonlocal fractional p-Kirchhoff Type elliptic system. Applicable Analysis (2019) doi: <a href="https://doi.org/10.1080/00036811.2019.1670347.10.1080/00036811.2019.1670347" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00036811.2019.1670347.10.1080/00036811.2019.1670347</a>
  8. [8] E. Azroul, A. Boumazourh and M. Srati, On a positive weak solutions for a class of weighted (p(.), q(.))−Laplacian systems. Moroccan J. of Pure and Appl. Anal. (MJPAA) doi: <a href="https://doi.org/10.2478/mjpaa-2019-0010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/mjpaa-2019-0010</a> (2020) 125-13910.2478/mjpaa-2019-0010
  9. [9] E. Azroul, M. Shimi, Nonlocal eigenvalue problems with variable exponent, Moroccan J. of Pure and Appl. Anal, Volume 4(1), 2018, Pages 46-61, DOI <a href="https://doi.org/10.1515/mjpaa-2018-000610.1515/mjpaa-2018-0006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/mjpaa-2018-000610.1515/mjpaa-2018-0006</a>
  10. [10] E. Azroul, A. Benkirane and M. Srati, Three solutions for a Schrödinger-Kirchhoff type equation involving nonlocal fractional integro-defferential operators J. Pseudo-Differ. Oper. Appl. (2020). <a href="https://doi.org/10.1007/s11868-020-00331-5.10.1007/s11868-020-00331-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11868-020-00331-5.10.1007/s11868-020-00331-5</a>
  11. [11] E. Azroul, A. Benkirane and M. Shimi, Existence and Multiplicity of solutions for fractional p(x,.)-Kirchhoff type problems in ℝN, Applicable Analysis, (2019), DOI:<a href="https://doi.org/10.1080/00036811.2019.1673373.10.1080/00036811.2019.1673373" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00036811.2019.1673373.10.1080/00036811.2019.1673373</a>
  12. [12] J. F. Bonder and A. M. Salort, Fractional order Orlicz-Soblev spaces, Journal of Functional Analysis, 2019,
  13. [13] Y. Chen, S. Levine, M. Rao, Variable exponent linear growth functionals in image processing, SIAM J. Appl. Math., 66 (2006), 1383-1406.<a href="https://doi.org/10.1137/050624522" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1137/050624522</a>
  14. [14] F.Demengel ans G. Demengel Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer (2012).<a href="https://doi.org/10.1007/978-1-4471-2807-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-4471-2807-6</a>
  15. [15] J. Dugundji, A. Granas; Fixed Point Theory. I. Monografie Matematyczne, vol. 61. PWN, Warsaw (1982)
  16. [16] G. Franzina and G. Palatucci, Fractional p-eigenvalues, Riv. Math. Univ. Parma (N.S.) 5 (2014), no. 2, 373-386.
  17. [17] T. C. Halsey, Electrorheological fluids, Science, 258 (1992), 761-766. <a href="https://doi.org/10.1016/j.jfa.2019.04.003.10.1016/j.jfa.2019.04.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jfa.2019.04.003.10.1016/j.jfa.2019.04.003</a>
  18. [18] L. Diening, Theorical and numerical results for electrorheological fluids, Ph.D. thesis, University of Freiburg, Germany (2002).
  19. [19] M. A. Krasnosel’skii and Ja. B. Rutickii, Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961. MR 0126722.
  20. [20] J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459-466.<a href="https://doi.org/10.2140/pjm.1958.8.459" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2140/pjm.1958.8.459</a>
  21. [21] E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. 49 (2014) 795-826.<a href="https://doi.org/10.1007/s00526-013-0600-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00526-013-0600-1</a>
  22. [22] M. Mihäilescu, V. Rädulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz-Soboliv spaces, Ann. Inst. Fourier 58 (6) (2008) 2087-2111.<a href="https://doi.org/10.5802/aif.2407" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5802/aif.2407</a>
  23. [23] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. MR 2944369.<a href="https://doi.org/10.1016/j.bulsci.2011.12.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bulsci.2011.12.004</a>
  24. [24] H. Qiu and M. Xiang; Existence of solutions for fractional p-Laplacian problems via Leray-Schauders nonlinear alternative; Boundary Value Problems (2016) DOI <a href="https://doi.org/10.1186/s13661-016-0593-810.1186/s13661-016-0593-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s13661-016-0593-810.1186/s13661-016-0593-8</a>
  25. [25] E. Zeidler, Nonlinear Functional Analysis and Applications, In Nonlinear monotone operators, Vol. II/B, Springer-Verlag, New York, 1990.
Language: English
Page range: 42 - 52
Submitted on: Dec 15, 2019
Accepted on: Mar 2, 2020
Published on: May 29, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2020 Athmane Boumazourh, Mohammed Srati, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.