Have a personal or library account? Click to login
Existence of a weak bounded solution for nonlinear degenerate elliptic equations in Musielak-Orlicz spaces Cover

Existence of a weak bounded solution for nonlinear degenerate elliptic equations in Musielak-Orlicz spaces

Open Access
|May 2020

References

  1. [1] R. Adams; Sobolev spaces, Academic Press Inc, New York, (1975).
  2. [2] Y. Ahmida, I. Chlebicka, P. Gwiazda, A. Youssfi, Gossez’s approximation theorems in Musielak-Orlicz-Sobolev spaces, J. Funct. Anal. (2018), <a href="https://doi.org/10.1016/j.jfa.2018.05.01510.1016/j.jfa.2018.05.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jfa.2018.05.01510.1016/j.jfa.2018.05.015</a>
  3. [3] Y. Ahmida, A. Youssfi, Poincaré-type inequalities in Musielak spaces, Annales Academi Scientiarum Fennic Mathematica, (2019), <a href="https://doi.org/10.5186/aasfm.2019.446810.5186/aasfm.2019.4468" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5186/aasfm.2019.446810.5186/aasfm.2019.4468</a>
  4. [4] A. Alvino, L. Boccardo, V. Ferone, L. Orsina, G. Trombetti; Existence results for nonlinear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl., IV. Ser. 182, No.1, (2003), 53-79.<a href="https://doi.org/10.1007/s10231-002-0056-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10231-002-0056-y</a>
  5. [5] M. Ait Khellou, A. Benkirane, S.M. Douiri; Existence of solutions for elliptic equations having natural growth terms in Musielak-Orlicz spaces. J. Math. Comput. Sci. 4(4), 665688 (2014)
  6. [6] A. Alvino, V. Ferone, G. Trombetti; A priori estimates for a class of non uniformly elliptic equations, Atti Semin. Mat. Fis. Univ. Modena 46-suppl., (1998), 381-391.
  7. [7] A. Benkirane, M. Sidi El Vally(Ould Mohameden Val); Variational inequalities in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math.Soc. Simon Stevin, Vol 21, No.5 (2014), pp. 787-811.
  8. [8] A. Benkirane, M. Sidi El Vally(Ould Mohameden Val); An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math.Soc. Simon Stevin 20(2013), No. 1, 57-75.
  9. [9] L. Boccardo, A. Dall’Aglio, L. Orsina; Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Semin. Mat. Fis. Univ. Modena 46-suppl., (1998), 51-81.
  10. [10] M. Bourahma, A. Benkirane, J. Bennouna, Existence of renormalized solutions for some nonlinear elliptic equations in Orlicz spaces, J. Rend. Circ. Mat. Palermo, II. Ser (2019). <a href="https://doi.org/10.1007/s12215-019-00399-z10.1007/s12215-019-00399-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12215-019-00399-z10.1007/s12215-019-00399-z</a>
  11. [11] I. Chlebicka, P. Gwiazda and A. Zatorska Goldstein, Well-posedness of parabolic equations in the non-reflexive and anisotropic Musielak-Orlicz spaces in the class of renormalized solutions, arXiv:1707.06097v4 [math.AP] 13 Apr 2018.<a href="https://doi.org/10.1016/j.jde.2018.07.020" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jde.2018.07.020</a>
  12. [12] J. P. Gossez; A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces, Proc. Sympos. Pure Math. 45, Amer. Math. Soc., (1986), 455-462.<a href="https://doi.org/10.1090/pspum/045.1/843579" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1090/pspum/045.1/843579</a>
  13. [13] J. P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. soc. 190, (1974), 163-205.<a href="https://doi.org/10.1090/S0002-9947-1974-0342854-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1090/S0002-9947-1974-0342854-2</a>
  14. [14] P. Gwiazda, I. Skrzypczak, A. Zatorska.Goldstein, Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space, J. Differential Equations 264 (2018) 341377.
  15. [15] M. Krasnosel’skii, Ya. Rutikii; Convex functions and Orlicz spaces, Groningen, Nordhooff (1969).
  16. [16] J. Musielak; Orlicz spaces and modular spaces, Lecture Note in Mahtematics, 1034, Springer, Berlin, 1983.<a href="https://doi.org/10.1007/BFb0072210" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BFb0072210</a>
  17. [17] G. Talenti; Nonlinear elliptic equations, Rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl., IV. Ser. 120, (1979), 159-184.<a href="https://doi.org/10.1007/BF02411942" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF02411942</a>
  18. [18] G. Talenti; Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa (4) 3, (1976), 697-718.
  19. [19] A. Youssfi; Existence of bounded solution for nonlinear degenerate elliptic equations in Orlicz spaces, Electronic Journal of Differential Equations, Vol. 2007(2007), No. 54, pp. 1-13.
Language: English
Page range: 16 - 33
Submitted on: Nov 20, 2019
Accepted on: Feb 26, 2020
Published on: May 29, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2020 M. Bourahma, J. Bennouna, M. El Moumni, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.