[1] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.National Bureau of Standards Applied Mathematics Series, no.55, Washington,DC: US Government Printing Office 1964.<a href="https://doi.org/10.1115/1.3625776" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/1.3625776</a>
[2] T. R. Blows, G. N. Lloyd, The number of small-amplitude limit cycles of Linard equations. Math. Proc. Camb. Phil. Soc. 1984;95:359-366.<a href="https://doi.org/10.1017/S0305004100061636" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S0305004100061636</a>
[3] A. Boulfoul, A. Makhlouf and M. Mellahi, On the limit cycles for a class of generalized Kukles differential systems, Journal of Applied Analysis and Computation 2019; 9:864-883.<a href="https://doi.org/10.11948/2156-907X.20180083" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.11948/2156-907X.20180083</a>
[5] C. J. Christopher, S. Lynch, Limit cycles in highly non-linear differential equations, Journal of Sound and Vibration. 1999;224:505-517.<a href="https://doi.org/10.1006/jsvi.1999.2199" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jsvi.1999.2199</a>
[7] P. De Maesschalck, F. Dumortier, Classical Linard equations of degree n ≥ 6 can have [(n − 1)/2] limit cycles. J Differ Equ 2011;250:2162-76.<a href="https://doi.org/10.1016/j.jde.2010.12.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jde.2010.12.003</a>
[8] F. Dumortier, C. Li, On the uniqueness of limit cycles surrounding one or more singularities for Linard equations. Nonlinearity 1996;9:1489-500.<a href="https://doi.org/10.1088/0951-7715/9/6/006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/0951-7715/9/6/006</a>
[10] F. Dumortier, D. Panazzolo, R. Roussarie, More limit cycles than expected in Linard systems. Proc Am Math Soc 2007;135:1895-904.<a href="https://doi.org/10.1090/S0002-9939-07-08688-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1090/S0002-9939-07-08688-1</a>
[11] F. Dumortier, C. Rousseau, Cubic Linard equations with linear dapimg. Nonlinearity 1990; 3:1015-1039.<a href="https://doi.org/10.1088/0951-7715/3/4/004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/0951-7715/3/4/004</a>
[12] B. Garca, J. Llibre, J. S. Prez del Ro, Limit cycles of generalized Linard polynomial differential systems via averaging theory. Chaos, Solitons Fractals 2014;62-63:1-9.<a href="https://doi.org/10.1016/j.chaos.2014.02.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.chaos.2014.02.008</a>
[13] A. Gasull, J. Torregrosa, Samll-amplitude limit cycles in Linard systems via multiplicity. J Differ Equ 1998;159:1015-1039.<a href="https://doi.org/10.1006/jdeq.1999.3649" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jdeq.1999.3649</a>
[17] A. Lins, W. de Melo, C. C. Pugh, On Linard's equation, Lecture notes in Math Nonlinear 597, Springer, 1977;pp:335-357.<a href="https://doi.org/10.1007/BFb0085364" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BFb0085364</a>
[18] J. Llibre, A. C. Mereu, M.A Teixeira, Limit cycles of the generalized polynomial Linard differential equations. Math Proc Camb Phil Soc 2010;148:363-383.<a href="https://doi.org/10.1017/S0305004109990193" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S0305004109990193</a>
[19] J. Llibre, C. Valls, Limit cycles for a generalization of Linard polynomial differential systems. Chaos Solitons Fractals 2013;46:65-74.<a href="https://doi.org/10.1016/j.chaos.2012.11.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.chaos.2012.11.010</a>
[20] J. Llibre, C. Valls, On the number of limit cycles for a generalization of Linard polynomial differential systems. Int J Bifurcation Chaos 2013;23 1350048-16.<a href="https://doi.org/10.1142/S021812741350048X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1142/S021812741350048X</a>
[21] J. Llibre, C. Valls, On the number of limit cycles of a class of polynomial differential systems. Proc A R Soc 2012;468:2347-2360.<a href="https://doi.org/10.1098/rspa.2011.0741" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1098/rspa.2011.0741</a>
[23] N. G. Lloyd, S. Lynch, Small-amplitude Limit cycles of certain Linard systems, Proc. Royal Soc. Proc R Soc Lond Ser A 1988;418:199-208.<a href="https://doi.org/10.1098/rspa.1988.0079" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1098/rspa.1988.0079</a>
[25] N. Mellahi, A. Boulfoul and A. Makhlouf, Maximum number of limit cycles for generalized Kukles polynomial differential systems, Diff. Equ. Dyn. Syst 2019; 27(4):493-514.<a href="https://doi.org/10.1007/s12591-016-0300-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s12591-016-0300-3</a>
[27] J. A. Sanders, F. Verhust, Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences.59 Springer-Verlag, New York; 1985.<a href="https://doi.org/10.1007/978-1-4757-4575-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-4757-4575-7</a>
[28] S. Smale, Mathematical problems for the next century. Math. Intelligencer 1998;20:7-15.<a href="https://doi.org/10.1007/BF03025291" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF03025291</a>