Have a personal or library account? Click to login
Limit cycles of Liénard polynomial systems type by averaging method Cover

Limit cycles of Liénard polynomial systems type by averaging method

Open Access
|May 2020

References

  1. [1] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.National Bureau of Standards Applied Mathematics Series, no.55, Washington,DC: US Government Printing Office 1964.<a href="https://doi.org/10.1115/1.3625776" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/1.3625776</a>
  2. [2] T. R. Blows, G. N. Lloyd, The number of small-amplitude limit cycles of Linard equations. Math. Proc. Camb. Phil. Soc. 1984;95:359-366.<a href="https://doi.org/10.1017/S0305004100061636" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S0305004100061636</a>
  3. [3] A. Boulfoul, A. Makhlouf and M. Mellahi, On the limit cycles for a class of generalized Kukles differential systems, Journal of Applied Analysis and Computation 2019; 9:864-883.<a href="https://doi.org/10.11948/2156-907X.20180083" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.11948/2156-907X.20180083</a>
  4. [4] A. Buica, J. Llibre, Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math. 2004;128:7-22.<a href="https://doi.org/10.1016/j.bulsci.2003.09.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bulsci.2003.09.002</a>
  5. [5] C. J. Christopher, S. Lynch, Limit cycles in highly non-linear differential equations, Journal of Sound and Vibration. 1999;224:505-517.<a href="https://doi.org/10.1006/jsvi.1999.2199" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jsvi.1999.2199</a>
  6. [6] W. A. Coppel, Some quadratic systems with at most one limit cycles. Dynamics reported, Vol. 2. New York: Wiley; 1998.
  7. [7] P. De Maesschalck, F. Dumortier, Classical Linard equations of degree n ≥ 6 can have [(n − 1)/2] limit cycles. J Differ Equ 2011;250:2162-76.<a href="https://doi.org/10.1016/j.jde.2010.12.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jde.2010.12.003</a>
  8. [8] F. Dumortier, C. Li, On the uniqueness of limit cycles surrounding one or more singularities for Linard equations. Nonlinearity 1996;9:1489-500.<a href="https://doi.org/10.1088/0951-7715/9/6/006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/0951-7715/9/6/006</a>
  9. [9] F. Dumortier, C. Li, Quadratic Linard equations with quadratic damping. J Differ Equ 1997; 139:41-59.<a href="https://doi.org/10.1006/jdeq.1997.3291" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jdeq.1997.3291</a>
  10. [10] F. Dumortier, D. Panazzolo, R. Roussarie, More limit cycles than expected in Linard systems. Proc Am Math Soc 2007;135:1895-904.<a href="https://doi.org/10.1090/S0002-9939-07-08688-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1090/S0002-9939-07-08688-1</a>
  11. [11] F. Dumortier, C. Rousseau, Cubic Linard equations with linear dapimg. Nonlinearity 1990; 3:1015-1039.<a href="https://doi.org/10.1088/0951-7715/3/4/004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/0951-7715/3/4/004</a>
  12. [12] B. Garca, J. Llibre, J. S. Prez del Ro, Limit cycles of generalized Linard polynomial differential systems via averaging theory. Chaos, Solitons Fractals 2014;62-63:1-9.<a href="https://doi.org/10.1016/j.chaos.2014.02.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.chaos.2014.02.008</a>
  13. [13] A. Gasull, J. Torregrosa, Samll-amplitude limit cycles in Linard systems via multiplicity. J Differ Equ 1998;159:1015-1039.<a href="https://doi.org/10.1006/jdeq.1999.3649" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jdeq.1999.3649</a>
  14. [14] D. Hilbert, Mathematische probleme, em lecture in: secondInternat. Cong. Math, Paris, 1900, Nachr. Ges. Wiss. Gttingen. Math. Phys. Ki 5 (1900), 253-297; English Transl: Bull. Amer. Math. Soc. 1902;8:437-479.
  15. [15] C. Li, J. Llibre, Uniqueness of limit cycles for Linard differential equations of degree four. J Differ Equ 2012;252:3142-62.<a href="https://doi.org/10.1016/j.jde.2011.11.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jde.2011.11.002</a>
  16. [16] A. Linard, tude des oscillations entrenues. Revue gnrale de l'lectricit 1928;23:946-954.
  17. [17] A. Lins, W. de Melo, C. C. Pugh, On Linard's equation, Lecture notes in Math Nonlinear 597, Springer, 1977;pp:335-357.<a href="https://doi.org/10.1007/BFb0085364" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BFb0085364</a>
  18. [18] J. Llibre, A. C. Mereu, M.A Teixeira, Limit cycles of the generalized polynomial Linard differential equations. Math Proc Camb Phil Soc 2010;148:363-383.<a href="https://doi.org/10.1017/S0305004109990193" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S0305004109990193</a>
  19. [19] J. Llibre, C. Valls, Limit cycles for a generalization of Linard polynomial differential systems. Chaos Solitons Fractals 2013;46:65-74.<a href="https://doi.org/10.1016/j.chaos.2012.11.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.chaos.2012.11.010</a>
  20. [20] J. Llibre, C. Valls, On the number of limit cycles for a generalization of Linard polynomial differential systems. Int J Bifurcation Chaos 2013;23 1350048-16.<a href="https://doi.org/10.1142/S021812741350048X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1142/S021812741350048X</a>
  21. [21] J. Llibre, C. Valls, On the number of limit cycles of a class of polynomial differential systems. Proc A R Soc 2012;468:2347-2360.<a href="https://doi.org/10.1098/rspa.2011.0741" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1098/rspa.2011.0741</a>
  22. [22] G. N. Lloyd, Limit cycles of polynomial systems-some recent developments. London Math. Soc. Lecture note Ser. 127, Cambridge University Press 1988;PP:192-234.<a href="https://doi.org/10.1017/CBO9780511600777.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/CBO9780511600777.007</a>
  23. [23] N. G. Lloyd, S. Lynch, Small-amplitude Limit cycles of certain Linard systems, Proc. Royal Soc. Proc R Soc Lond Ser A 1988;418:199-208.<a href="https://doi.org/10.1098/rspa.1988.0079" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1098/rspa.1988.0079</a>
  24. [24] S. Lynch, Limit cycles of generalized Linard equations. Appl. Math. Lett. 1995;8:15-17.<a href="https://doi.org/10.1016/0893-9659(95)00078-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0893-9659(95)00078-5</a>
  25. [25] N. Mellahi, A. Boulfoul and A. Makhlouf, Maximum number of limit cycles for generalized Kukles polynomial differential systems, Diff. Equ. Dyn. Syst 2019; 27(4):493-514.<a href="https://doi.org/10.1007/s12591-016-0300-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s12591-016-0300-3</a>
  26. [26] G. S. Rychkov, The maximum number of limit cycle of the systemx˙ = y − a1x3− a2x5, y˙ = −x is two. Differ Uravn 1975;11:380-391.
  27. [27] J. A. Sanders, F. Verhust, Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences.59 Springer-Verlag, New York; 1985.<a href="https://doi.org/10.1007/978-1-4757-4575-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-4757-4575-7</a>
  28. [28] S. Smale, Mathematical problems for the next century. Math. Intelligencer 1998;20:7-15.<a href="https://doi.org/10.1007/BF03025291" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF03025291</a>
  29. [29] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, em Berlin: Springer-Verlag, Second Edition; 1991.<a href="https://doi.org/10.1007/978-3-642-97149-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-97149-5</a>
  30. [30] P. Yu, M. Han, Limit cycles in generalized Linard systems. Chaos Solitons Fract 2006;30:1048-1068.<a href="https://doi.org/10.1016/j.chaos.2005.09.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.chaos.2005.09.008</a>
Language: English
Page range: 1 - 15
Submitted on: Nov 27, 2019
Accepted on: Feb 25, 2020
Published on: May 29, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2020 Amel Boulfoul, Nawal Mellahi, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.