Have a personal or library account? Click to login
On the spectrum of Robin boundary p-Laplacian problem Cover
Open Access
|Jan 2020

References

  1. [1] R. Adams: Sobolev Spaces, Academic Press, New York, 1975.
  2. [2] A. Anane: Simplicité et isolation de la première valeur propre du p-Laplacien, C. R. Acad. Sci. Paris, 305 (1987), 725-728.
  3. [3] G. Astrita and G. Marrucci: Principles of Non-Newtonian Fluids Mechanics, McGraw-Hill, New York, 1974.
  4. [4] J.P.G. Azorero and I.P. Alonso: Existence and uniqueness for the p-Laplacian: nonlinear eigenvalues, Comm. Partial Differential Equatoions, 12 (1987), 1389-1430.10.1080/03605308708820534
  5. [5] I. Babuska and J. Osborn: Eigenvalue problems, in “Handbook of numerical analysis”, vol. II, North-Holland, Amsterdam, (1991), 314-787.10.1016/S1570-8659(05)80042-0
  6. [6] A. Beurling and A. Livingston: A theorem on duality mappings in Banach space, Ark. Mat., 4 (1962), 405-411.10.1007/BF02591622
  7. [7] F.E. Browder: On a theorem of Beurling and Livingston, Cand. J. Math. 17 (1965), 367-372.10.4153/CJM-1965-037-2
  8. [8] F.E. Browder and W.F. Petryshyn: Approximation methods and the generalized topological degree for nonlinear mapping in Banach spaces, J. Funct. Anal., 3 (1969), 217-245.10.1016/0022-1236(69)90041-X
  9. [9] J.F. Bronder and J. D. Rossi: A nonlinear eigenvalue problem with indefinite weights related to Sobolev trace embedding, Publ. Mat., 46 (2002), 221-235.10.5565/PUBLMAT_46102_12
  10. [10] S.N. Chow and J.K. Hale: Methods of bifurcation theory, Springer Verlag, New York, 1982.10.1007/978-1-4613-8159-4
  11. [11] I. Ciorânascu: Duality mapping in nonlinear functional analysis, Publishing House of Romanian Academy Bucharest, 1974. (in Romanian).
  12. [12] J. Crîngnu: Variational and topological methods for Neumann problems with p-Laplacian, Communications on Applied Nonlinear Analysis, 11 (2004), 1-38.
  13. [13] M. Cuesta: Eigenvalue problems for the the p-Laplacian with indefinite weights, Electronic Journal of Differential Equations, Vol. 2001, 33 (2001), 1-9.
  14. [14] D. Daners: Principal eigenvalues for generalized indefinite Robin Problems, Potential Analysis, Vol. 38, 4 (2013), 1047-1069.10.1007/s11118-012-9306-9
  15. [15] J.I. Diaz: Nonlinear partial differential equations and free boundaries, Vol. I, Elliptic Equations, London, 1985.
  16. [16] G. Dinca and P. Jebelean: Some existence results for a class of nonlinear equations involving a duality mapping, Nonlinear Analysis, 46 (2001), 347-363.10.1016/S0362-546X(00)00120-6
  17. [17] P. Drábek and I. Schindler: Positive solutions for the p-Laplacian with Robin boundary conditions on irregular domains, Applied Mathematics Letters, 24 (2011), 588-491.10.1016/j.aml.2010.11.022
  18. [18] D. Motreanu and P. Winkert: On the Fučik spectrum for the p-Laplacian with Robin boundary condition, In book: Nonlinear analysis, Edition: Springer Optim. Appl., P.M. Pardalos et al. (eds.), Chapter: 28, 2012, 471-485.10.1007/978-1-4614-3498-6_28
  19. [19] A. El Khalil and A. Touzani:On the first eigencurve of the p-Laplacian, Partial Differential Equations, Lecture Notes in Pure and Applied Mathematics Series, Marcel Dekker, Inc., 229 (2002), 195-205.10.1201/9780203910108.ch16
  20. [20] C. Flores and M.A. Del Pino: Asymptotic behavior of best constants and extremals for trace embedding in expanding domains, Comm. Partial Differential Equations 26(11-12) (2001), 2189-2210.10.1081/PDE-100107818
  21. [21] E. Gagliardo: Ulteriori proprità di alcune di funzioni in più variabli (in Italian), Ricerche Mat., 8 (1959), 24-51.
  22. [22] Y.X. Huang: On eigenvalue problems of the p-Laplacian with Neumann boundary conditions, Proceedings of the American Mathematical Society, Vol. 109, 1 (1990), 177-184.10.1090/S0002-9939-1990-1010800-9
  23. [23] B. Kawohl: On a family of torsional creep problems, J. Reine Angew. Math., 410 (1990), 1-22.10.1515/crll.1990.410.1
  24. [24] S. Khademloo: Eigenvalue Problems for the p-Laplace Operator with Nonlinear Boundary Condition, Australian Journal of Basic and Applied Sciences, 5(12) (2011), 3331-3337.
  25. [25] V.G. Maz’ja: Sobolev space, Springer Series in Soviet Mathematics, Springer Verlag, Berlin, 1990, (translated from Russian by T.O. Shaposhnikova).
  26. [26] P. Lindqvist: On the equation div(|∇u|p−2∇u) + λ|u|p−2u = 0, Proc. Amer. Math. Soc., 109 (1990), 157-164.10.1090/S0002-9939-1990-1007505-7
  27. [27] A. Lê: Eigenvalue problems for the p-Laplacian, Nonlinear Anal., 64 (2006), 1057-1099.10.1016/j.na.2005.05.056
  28. [28] C.V. Pao: Nonlinear parabolic and elliptic equations, Plenum Press, New York, London, 1992.10.1007/978-1-4615-3034-3
  29. [29] N.S. Papageorgiou and V.D. Rŭdulescu: Multiple solutions with precise sign for nonlinear parametric Robin problems, Journal of Differential Equations 256 (7) (2014), 2449-2479.10.1016/j.jde.2014.01.010
  30. [30] M.C. Pelissier: Sur quelques problèmes non linéaires en glaciologie, Thèse, Publications Mathématiques d’Orsay, No. 110, (1975).
  31. [31] A. Szulkin: Ljusternik-Schnirelmann theory on C1-manifolds, Ann. Inst. Henri Poincaré, 5 (1988), 119-139.10.1016/s0294-1449(16)30348-1
Language: English
Page range: 279 - 293
Submitted on: Nov 9, 2019
Accepted on: Dec 29, 2019
Published on: Jan 24, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Abdelouahed El Khalil, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.