References
- 1. C. Castillo-Chavez, B. Song, Dynamic models of tuberculosis and their applications, Mathematical Biosciences and Engineering, 1(2), 361-404. 2004.10.3934/mbe.2004.1.361
- 2. R. Diel, R. Loddenkemper, S. Niemann and P.R. Meywald-Walter Narayanan, Restriction fragment length polymorphism typing of clinical isolates of my mycobacterium tuberculosis from patients with pulmonary tuberculosis in Madras, South India. Tuber Lung Dis, 76(6), 550-554. 1995.10.1016/0962-8479(95)90533-2
- 3. D.M.Dago, M.O. Ibrahim and A.S. Tosin, Stability analysis of a deterministic mathematical model for transmission dynamics of tuberculosis. International Journal of Advances in Science Engineering and Technology, ISSN, 2, 2321-9009. 2015.
- 4. Department of Health of Indonesia, Prevention of Tuberculosis Handbook, 2008.
- 5. K.Q. Fredlina, T.B. Oka and I.M. Dwipayana, SIR(Susceptible, Infectious, Recovered) Model for Tuberculosis Disease Transmission, J. Matematika 1(1), 52-58. 2012.
- 6. N.N. Leontine, T.M. Thomas, A. Franklin and M.M. Martin Luther, Mathematical model to assess vaccination and effective contact rate impact in the spread of tuberculosis, Journal of Biological Dynamics, 13(1). 2019.10.1080/17513758.2018.156321831793413
- 7. D.P. Moualeu, S. Bowong and J. Kurths, Parameter estimation of a tuberculosis model in a patch environment: case of Cameroon, Proc. Int. Sym. Math. Comput. Biol., 5. 352-373.
- 8. J.D. Murray, Mathematical Biology I, An introduction, 3rd ed. Springer, Heidelberg, 2001.
- 9. J. Nainggolan, S. Sudradjat, A.K. Supriatna and N. Anggriani, Mathematical model of tuberculosis, Journal of Physics: Conference Series, 423. 2013.10.1088/1742-6596/423/1/012059
- 10. L. Prihutami, Stability analysis of tuberculosis transmission model, Thesis, Diponegoro University, Semarang, 2009.
- 11. T. Iskandar, N. Ayningtia, S. Munzir, V, Halfiani and M. Ramli, Mathematical model of tuberculosis epidemic with recovery time delay, Department of Mathematics, Syiah Kuala University, Banda Aceh, Indonesia, 2311. 2017.10.1063/1.5016655
- 12. United Nations Department of Economic and Social Affairs/Population Division, World Population Prospects, 2. 1-4. 2012.
- 13. V. K. Gupta, S.k. Tiwari, S. Sharma and L. Nagar, Mathematical model of tuberculosis with drug resistance to the first and second line of treatment, Journal of New Theory, 1. 94-106. 2018.
- 14. WHO policy on TB infection control in health care facilities, Congregate Settings and Households Geneva, World Health Organization, 2009.
- 15. World Health Organization (WHO), Global Tuberculosis Report, 2016.
- 16. World Bank, World Development Indicators, 2013.10.1596/978-0-8213-9616-2
- 17. World Health Organization, Global health observatory data respiratory. Life expectancy: Life expectancy by country, World Health Organization, Geneva, Switzerland, 2013.
- 18. Y. Yu, Y. Shi and W. Yao, Dynamic model of tuberculosis considering multi-drug resistance and their applications, 8 2. 362-372. 2018.10.1016/j.idm.2018.11.001632621930839915