Have a personal or library account? Click to login
Existence Results For A Class Of Nonlinear Degenerate Elliptic Equations Cover

Existence Results For A Class Of Nonlinear Degenerate Elliptic Equations

Open Access
|Jan 2020

References

  1. [1] D. Bresch, J. Lemoine, F. Guíllen-Gonzalez, A note on a degenerate elliptic equation with applications for lake and seas, Electron. J. Differential Equations, vol. 2004 (2004), No. 42, 1-13.
  2. [2] A.C.Cavalheiro, Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems, J. Appl. Anal., 19 (2013), 41-54.10.1515/jaa-2013-0003
  3. [3] A.C.Cavalheiro, Existence results for Dirichlet problems with degenerate p-Laplacian, Opuscula Math., 33, no 3 (2013), 439-453.10.7494/OpMath.2013.33.3.439
  4. [4] A.C.Cavalheiro, Topics on Degenerate Elliptic Equations, Lambert Academic Publishing, Germany (2018).
  5. [5] M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser, Berlin (2009).10.1007/978-3-7643-9982-5
  6. [6] M. Colombo, Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations: With Applications to the Vlasov-Poisson and Semigeostrophic Systems, Publications on the Scuola Normale Superiore Pisa, 22, Pisa (2017).10.1007/978-88-7642-607-0_8
  7. [7] P. Drábek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter, Berlin (1997)10.1515/9783110804775
  8. [8] E. Fabes, C. Kenig, R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116.10.1080/03605308208820218
  9. [9] S. Fučik, O. John and A. Kufner, Function Spaces, Noordhoff International Publ., Leyden, (1977).
  10. [10] J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, (1985).
  11. [11] D.Gilbarg and N.S. Trudinger, Elliptic Partial Equations of Second Order, 2nd Ed., Springer, New York (1983).
  12. [12] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, (1993).
  13. [13] A. Kufner, Weighted Sobolev Spaces, John Wiley & Sons, Germany (1985).
  14. [14] A. Kufner and B. Opic, How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carolin., 25 (1984), 537 - 554.
  15. [15] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Am. Math. Soc. 165 (1972), 207-226.10.1090/S0002-9947-1972-0293384-6
  16. [16] M. Talbi and N. Tsouli, On the spectrum of the weighted p-Biharmonic operator with weight, Mediterr. J.Math., 4 (2007), 73-86.10.1007/s00009-007-0104-3
  17. [17] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, (1986).
  18. [18] B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Math., vol. 1736, Springer-Verlag, (2000).10.1007/BFb0103908
  19. [19] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol.I, Springer-Verlag, Berlin (1990).10.1007/978-1-4612-0981-2
  20. [20] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol.II/B, Springer-Verlag, Berlin (1990).10.1007/978-1-4612-0981-2
Language: English
Page range: 164 - 178
Submitted on: Sep 17, 2019
Accepted on: Nov 4, 2019
Published on: Jan 24, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Albo Carlos Cavalheiro, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.