Have a personal or library account? Click to login
A Discrete Duality Finite Volume Method for Coupling Darcy and Stokes Equations Cover

A Discrete Duality Finite Volume Method for Coupling Darcy and Stokes Equations

By: M. Rhoudaf and  N. Staïli  
Open Access
|Nov 2019

References

  1. [1] B. Andreianov, F. Boyer, and F. Hubert. Discrete duality finite volume schemes for leray-lions-type elliptic problems on general 2d meshes. 23(1):145–195.10.1002/num.20170
  2. [2] Y. Boubendir and S. Tlupova. Stokesdarcy boundary integral solutions using preconditioners. 228(23):8627–8641.10.1016/j.jcp.2009.08.014
  3. [3] F. Boyer, F. Hubert, and S. Krell. Non-overlapping schwarz algorithm for solving 2d m-DDFV schemes. 30(4):Pp 1062–1100.10.1093/imanum/drp001
  4. [4] M. Cai, M. Mu, and J. Xu. Preconditioning techniques for a mixed stokes/darcy model in porous media applications. 233(2):346–355.10.1016/j.cam.2009.07.029
  5. [5] C. Cancs, C. Chainais-Hillairet, and S. Krell. Numerical analysis of a nonlinear free-energy diminishing discrete duality finite volume scheme for convection diffusion equations. 18(3):407–432.10.1515/cmam-2017-0043
  6. [6] P. Chidyagwai and B. Rivire. On the solution of the coupled navierstokes and darcy equations. 198(47):3806–3820.10.1016/j.cma.2009.08.012
  7. [7] M. Correa and A. Loula. A unified mixed formulation naturally coupling stokes and darcy flows. 198(33):2710–2722.10.1016/j.cma.2009.03.016
  8. [8] S. Delcourte, K. Domelevo, and P. Omnes. A discrete duality finite volume approach to hodge decomposition and divcurl problems on almost arbitrary twodimensional meshes. 45(3):1142–1174.10.1137/060655031
  9. [9] M. Discacciati. Domain decomposition methods for the coupling of surface and groundwater flows.
  10. [10] M. Discacciati, E. Miglio, and A. Quarteroni. Mathematical and numerical models for coupling surface and groundwater flows. 43(1):57–74.10.1016/S0168-9274(02)00125-3
  11. [11] K. Domelevo and P. Omnes. A finite volume method for the laplace equation on almost arbitrary twodimensional grids. 39(6):1203–1249.10.1051/m2an:2005047
  12. [12] G. Du, Y. Hou, and L. Zuo. A modified local and parallel finite element method for the mixed stokesdarcy model. 435(2):1129–1145.10.1016/j.jmaa.2015.11.003
  13. [13] M. Gander, L. Halpern, F. Hubert, and S. Krell. Optimized schwarz methods for anisotropic diffusion with discrete duality finite volume discretizations. page 34.
  14. [14] M. Hellou, J. Martinez, and M. El Yazidi. Stokes flow through microstructural model of fibrous media. 31(1):97–103.10.1016/S0093-6413(03)00081-8
  15. [15] F. Hermeline. A finite volume method for the approximation of diffusion operators on distorted meshes. 160(2):481–499.10.1006/jcph.2000.6466
  16. [16] A. R. A. Khaled and K. Vafai. The role of porous media in modeling flow and heat transfer in biological tissues. 46(26):4989–5003.10.1016/S0017-9310(03)00301-6
  17. [17] J. M. V. A. Koelman and M. Nepveu. Darcy flow in porous media: Cellular automata simulations. In Numerical Methods for the Simulation of Multi-Phase and Complex Flow, number 398 in Lecture Notes in Physics, pages 136–145. Springer Berlin Heidelberg.10.1007/BFb0022313
  18. [18] S. Krell. Stabilized DDFV schemes for stokes problem with variable viscosity on general 2d meshes. 27(6):1666–1706.10.1002/num.20603
  19. [19] W. J. Layton, F. Schieweck, and I. Yotov. Coupling fluid flow with porous media flow. 40(6):2195–2218.10.1137/S0036142901392766
  20. [20] P. Omnes. Dveloppement et analyse de mthodes de volumes finis.
  21. [21] H. Rui and R. Zhang. A unified stabilized mixed finite element method for coupling stokes and darcy flows. 198(33):2692–2699.10.1016/j.cma.2009.03.011
  22. [22] J. Urquiza, D. N’Dri, A. Garon, and M. Delfour. Coupling stokes and darcy equations. 58(5):525–538.10.1016/j.apnum.2006.12.006
Language: English
Page range: 46 - 62
Submitted on: May 8, 2019
Accepted on: Aug 19, 2019
Published on: Nov 8, 2019
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 M. Rhoudaf, N. Staïli, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.