Have a personal or library account? Click to login
Review of road selection methods for the purpose of multiscale mapping Cover

Review of road selection methods for the purpose of multiscale mapping

Open Access
|Aug 2025

Figures & Tables

Figure 1.

Literature search scheme (inspired by the Prisma searching model)Source: own elaboration
Literature search scheme (inspired by the Prisma searching model)Source: own elaboration

Figure 2.

Distribution of types of methods appearing in selected publicationsSource: own elaboration
Distribution of types of methods appearing in selected publicationsSource: own elaboration

Information about most important characteristics of the research undertaken concerning road network selection_Selected references considered in this paper are included, as many of the works lack quantitative results’ evaluation

AuthorYearApproachSource scaleTarget scaleMethodMajor metricMajor purpose
Xiao et al.2024ML1:100 0001:200 000 Accuracydatabase generalization
MLSU-TAGCN81.40%
MLSU-GCN74.80%
MLSU-GAT75.51%
MLSU-GraphSAGE80.80%
Selection-4Fs71.20%
Selection-22Fs78.40%
Tang et al.2024ML1:10 000 F1-scoredatabase generalization
1:50 000GCN with functional semantic features89.74%
1:200 00082.70%
Zheng et al.2024ML1:250 0001:1 000 000 Accuracydatabase generalization
HAN75.35%
Karsznia et al.2024aML1:250 0001:500 000 Accuracygeneral geographic map
DT81.25%
RF84.38%
SVM84.38%
DTGA90.00%
NN81.88%
Guo et al.2023ML1:10 0001:50 000 F1 Scoredatabase generalization
GNN92.10%
AHP88.00%
Lyu et al.2022Graph1:50 0001:100 000 Accuracydatabase generalization
Road-path selection constrained by settlements86.00%
Pung et al.2022Graph1:10 000„Large-scale” Selected-Source Correlationurban road generalization
Functional node eliminationPearson (ρ) = 0.964
Spearman (R) = 0.911
Karsznia et al.2022ML1:250 000 Accuracydatabase generalization
1:500 000DT84.46%
DTGA83.33%
RF84.96%
1:1 000 000DT99.18%
DTGA99.44%
RF99.34%
Wu et al.2022Mesh1:10 0001:50 000 Shape similarity overlaptopographic map
Direct pair merging100%
Iterative area elimination100%
Zheng et al.2021ML1:10 0001:100 000 Accuracydatabase generalization
MLP85.83%
JK-GAT88.12%
Res-GAT87.88%
Dense-GAT87.41%
Han et al.2020Stroke1:5 0001:200 000 Common stroke ratiodatabase generalization
AHP89%
Yu et al.2020StrokeUnknown Maximum similaritynavigation
1:5 000Traffic Flow Radical Law Strokes61.15%
1:25 00065.86%
1:50 00090.95%
1:5 000Traffic Flow Pair Strokes61.61%
1:25 00065.58%
1:50 00090.95%
Li et al.2020Mesh, Stroke1:10 0001:50 000 Maximum similaritytopographic map
Mesh elimination89.52%
Stroke-edge elimination91.64%
Park, Huh2019ML1:5 0001:25 000 Matching ratiotopographic map
Logistic Regression81.66%
Zhang et al.2017Stroke1:10 0001:50 000 Accuracydatabase generalization
Stroke generation with weighted Voronoi diagrams88.80%
Zhou, Li2017ML Accuracydatabase generalization
1:20 0001:50 000MP80.45%
SVM77.05%
BLR80.90%
1:100 000MP79.90%
SVM81.10%
BLR80.65%
1:200 000MP91.55%
SVM92.90%
BLR92.35%
1:50 0001:250 000MP83.20%
SVM82.70%
BLR83.10%
Weiss, Weibel2014Stroke1:10 0001:200 000 Mean improvement (vs. Basic)database generalization
Enhanced stroke generation67.88%
Benz, Weibel2014Stroke, Mesh1:10 0001:50 000 Satisfaction of hard constraintsdatabase generalization
Extended stroke–mesh combination100%
Zhou, Li2014ML1:20 000 Accuracymap updates
1:50 000BPNN82.4%
1:100 00087%
1: 200 00098.6%
Li et al.2012Stroke, Mesh Accuracydatabase generalization
1:20 0001:50 000Stroke generation84.7%
1:100 00076.7%
1:200 00068.5%
1:50 0001:250 00077.3%
1:20 0001:50 000Mesh density67.7%
1:100 00063.7%
1:200 00061.6%
1:50 0001:250 00071.4%
Zhang, Li2011Graph No. of road segmentsnavigation
Scale freeTop 2% strokesEgo network82.1%
Top 10% strokes89.9%
Top 15% strokes92.5%
Top 20% strokes92.6%
Top 2% strokesWeighted ego network87.1%
Top 10% strokes95.8%
Top 15% strokes94%
Top 20% strokes94.6%
Gülgen, Gökgöz2011Mesh Selected road length changedatabase generalization
1:25 0001:50 000Urban block amalgamation14.10%
1:100 000−17.30%
Yang et al.2011Stroke1:1 000Not specified Mean similarity with targetdatabase generalization
Hierarchical stroke generation40.75%
Touya2010Stroke, Mesh1:50 0001:100 000 Road length overlapdatabase generalization
Enriched structural selection97%
Liu et al.2010Stroke1:10 0001:50 000 Avg no of identical strokesdatabase generalization
Stroke generation with seed extension91.84%
Chen et al.2009Mesh1:10 0001:50 000 Mean consistency with existing mapmap updates
Mesh density-based selection89.50%
DOI: https://doi.org/10.2478/mgrsd-2025-0031 | Journal eISSN: 2084-6118 | Journal ISSN: 0867-6046
Language: English
Page range: 267 - 281
Submitted on: Apr 3, 2025
Accepted on: May 23, 2025
Published on: Aug 16, 2025
Published by: Faculty of Geography and Regional Studies, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Albert Adolf, Izabela Karsznia, published by Faculty of Geography and Regional Studies, University of Warsaw
This work is licensed under the Creative Commons Attribution 4.0 License.