Have a personal or library account? Click to login
Discovering the factors driving regional competitiveness in the face of climate change Cover

Discovering the factors driving regional competitiveness in the face of climate change

Open Access
|Apr 2023

Figures & Tables

Figure 1.

Research model
Source: Own elaboration
Research model Source: Own elaboration

Figure 2.

Spatial distribution of the RCCCI index Source: Karman et al. (2022)
Spatial distribution of the RCCCI index Source: Karman et al. (2022)

Figure 3.

Research procedure Source: Own elaboration
Research procedure Source: Own elaboration

Figure 4.

The scatter plot for linearity Source: Own elaboration
The scatter plot for linearity Source: Own elaboration

Figure 5.

The P–P plot of normality test Source: Own elaboration
The P–P plot of normality test Source: Own elaboration

Breusch-Pagan test

VariableBP statistic valueP-value
RCCCI13.0690.022**

Local estimated parameters

ParameterMinMaxAverage
Intercept11.0812.3211.98
β1−0.510.23−0.28
β2−2.241.90−0.35
β3−1.901.15−0.13
β50.0760.1730.132
β60.2070.2490.228
β70.3370.6350.418
β90.1820.4960.361
β100.0950.3420.211
β110.0060.070.033
β12−0.3740.110−0.096
β13−0.0730.030−0.019
β15−0.0370.025−0.058
β16−1.1591.06−0.182
β180.0800.2160.147
β190.1040.3580.279

Correlation analysis results

RCCCIDESECO2FIAFIRDEVAPUBBANEBTRYPARMDPMUDIGMANATE
RCCCI1.00−0.21−0.52−0.04−0.36−0.080.550.490.630.84−0.110.13−0.28−0.370.460.370.010.940.900.50
D−0.211.00−0.06−0.080.04−0.020.22−0.29−0.110.100.06−0.01−0.34−0.190.03−0.16−0.17−0.12−0.030.08
ES−0.53−0.061.000.590.200.44−0.210.05−0.31−0.550.200.020.330.47−0.11−0.040.59−0.57−0.62−0.38
ECO2−0.04−0.080.591.000.180.190.230.480.10−0.000.210.060.130.320.360.280.840.01−0.040.01
FI−0.360.040.200.181.00−0.33−0.16−0.03−0.15−0.280.15−0.160.300.36−0.22−0.080.25−0.34−0.29−0.01
AFI−0.08−0.020.440.19−0.331.00−0.12−0.14−0.300.010.440.48−0.27−0.15−0.02−0.020.07−0.02−0.15−0.21
RDE0.550.22−0.210.23−0.16−0.121.000.440.530.52−0.16−0.04−0.43−0.320.550.300.170.480.560.51
VA0.49−0.250.050.48−0.03−0.140.441.000.620.27−0.09−0.20−0.010.110.480.450.600.320.350.10
PUB0.63−0.11−0.310.10−0.15−0.300.530.621.000.37−0.40−0.10−0.15−0.170.430.360.230.470.530.35
BAN0.840.10−0.55−0.00−0.280.010.520.270.371.000.130.25−0.36−0.370.420.16−0.110.920.890.53
EB−0.110.060.200.210.150.44−0.16−0.09−0.400.131.000.32−0.020.190.110.020.180.06−0.080.15
TRY0.13−0.000.020.06−0.160.48−0.04−0.20−0.100.250.321.00−0.13−0.12−0.050.030.010.210.060.14
PAR−0.28−0.340.330.130.30−0.27−0.43−0.01−0.15−0.36−0.02−0.131.000.73−0.27−0.190.20−0.28−0.32−0.28
MD−0.37−0.190.470.320.36−0.15−0.320.11−0.17−0.370.19−0.120.731.00−0.12−0.060.41−0.40−0.37−0.24
P0.460.03−0.110.36−0.22−0.020.550.480.430.420.11−0.05−0.27−0.121.000.460.370.380.480.22
M0.37−0.16−0.040.28−0.08−0.020.300.450.360.160.020.03−0.19−0.060.461.000.360.240.330.15
U0.01−0.170.590.840.250.070.170.600.23−0.110.180.010.200.410.370.361.00−0.09−0.070.04
DIG0.94−0.12−0.570.00−0.34−0.020.480.320.470.920.060.21−0.28−0.400.380.24−0.091.000.910.58
MAN0.90−0.03−0.62−0.04−0.29−0.150.560.350.530.89−0.080.06−0.32−0.370.480.33−0.070.911.000.48
ATE0.500.08−0.380.01−0.01−0.210.510.100.350.530.150.14−0.28−0.240.220.150.040.580.481.00

The Breusch-Pagan Test combination for the determination of variables

VariableBP testP-valueNote
Y dengan X1 (D)28.210.03*Local
Y dengan X2 (ECO2)139.010.00*Local
Y dengan X3 (ES)64.180.00*Local
Y dengan X4 (FI)0.610.89Global
Y dengan X5 (AFI)18.900.03*Local
Y dengan X6 (RDE)26.080.03*Local
Y dengan X7 (VA)37.650.02*Local
Y dengan X8 (PUB)1.560.35Global
Y dengan X9 (BAN)44.720.01*Local
Y dengan X10 (EB)25.250.02*Local
Y dengan X11 (TRY)20.560.00*Local
Y dengan X12 (PAR)16.300.00*Local
Y dengan X13 (MD)14.780.05*Local
Y dengan X14 (M)3.740.18Global
Y dengan X15 (P)14.230.00*Local
Y dengan X16 (U)36.830.00*Local
Y dengan X17 (MAN)3.840.32Global
Y dengan X18 (ATE)40.980.00*Local
Y dengan X19 (DIG)20.230.05*Local

Model summary

b*SE z b*B stdTp
Intercept−0.0920.007 −12.5060.000
X1 (D)−0.0800.015−0.125−5.3470.000
X2 (ECO2)−0.1370.013−0.140−8.3790.000
X7 (VA)0.0660.0120.1645.6880.000
X8 (PUB)0.0260.0110.0772.2840.025
X10 (EB)0.0810.0090.2178.8630.000
X12 (PAR)−0.0360.007−0.116−4.8620.000
X14 (M)0.0180.0090.0492.0450.044
X19 (DIG)0.2270.0080.77030.0030.000

PCA analysis results

VariableStrengthR2VariableStrengthR2
ES0.6810.467VA0.7730.406
ECO20.670RDE0.521
D0.011FI0.312
BAN0.7630.616AFI0.106
PUB0.551PAR0.9100.440
EB0.174MD0.852
TRY0.162P0.718
DIG0.8410.730M0.032
MAN0.811U0.008
ATE0.575

Results of best subset regression

ClusterRegionsVariablesAICCp MallowsR2
LowSK, LV, PL, BG, EL, HU, ROAll variables except M−711.649-0.9
Middle–lowUK, FR, AT, IT, ES, PT, CZ, MTD, ECO2, AFI, RDE, VA, PUB, BAN, EB, TRY, PAR, MD, P, M, U, ATE--0.9
Middle–highSE, DE, DK, FIN, UK, BE, NLD, ES, FI, RDE, BAN, EB, PAR, U, M, MAN, ATE−166.62410.50.87
HighSE, NL, DEECO2, BAN, U, ATE−129.501−3.6520.74

Descriptive statistics

VariableN-significantMeanMinimumMaximumVarianceSt. dev.SkewnessKurtosis
RCCCI2810.01−0.80.69.76E−020.31−0.457−0.775
D2332412.1094.75717.47.09E+05842.190.0551.457
ES24015.960.0129.63.88E+0219.702.4947.555
ECO227014425.602.088498.32.18E+0814767.672.3767.168
FI2734.220.034.93.05E+015.532.96611.064
AFI2780.810.51.53.91E−020.200.6170.557
RDE2080.340.01.06.84E−020.260.9530.196
VA24053109.921178.4674282.84.51E+0967168.074.42432.094
PUB2090.550.11.05.74E−020.240.171−0.777
BAN28162.0611.395.03.59E+0218.96−0.7310.373
EB17010.265.219.97.38E+002.720.3840.595
TRY2622.902.24.36.38E−020.250.4483.485
PAR19521.397.949.77.31E+018.551.1760.909
MD1566.800.525.83.88E+016.231.4951.390
P281489.363.311509.11.66E+061289.345.66938.089
M2704650.19−64908.048975.09.80E+079900.16−0.17210.768
U280806.3214.05253.24.40E+05663.492.61010.968
DIG1940.530.01.06.12E−020.25−0.036−0.785
MAN1600.350.10.51.02E−020.10−0.422−1.088
ATE2600.650.51.53.14E−020.182.4117.015

Multicollinearity results

IndicatorToleranceVIF
D0.4622.163
ES0.1168.642
ECO20.1666.029
FI0.4602.172
AFI0.1656.051
RDE0.2663.763
VA0.1895.281
PUB0.2793.588
BAN0.05717.621
EB0.2743.653
TRY0.4702.127
PAR0.2174.604
MD0.2444.096
P0.3392.947
M0.5371.862
U0.1029.831
DIG0.03330.705
MAN0.06116.413
ATE0.2414.150

j_mgrsd-2023-0009_tab_011

IZp-value
EB0.224.120.00
ECO20.194.080.02
ES0.214.100.04
FI0.245.070.01
AFI0.366.430.00
RDE0.183.550.04
PAR0.051.470.06
MD0.103.750.00
P0.113.950.00
VA0.488.720.00
PUB0.031.300.00
BAN0.274.620.03
TRY0.173.150.02
D0.234.080.00
M0.102.210.06
U0.336.120.02
DIG0.467.510.00
MAN0.093.560.04
ATE0.264.740.04

Global estimated parameters

ParameterEstimation Value
β40.003
β80.052
β14−0.007
β170.031
DOI: https://doi.org/10.2478/mgrsd-2023-0009 | Journal eISSN: 2084-6118 | Journal ISSN: 0867-6046
Language: English
Page range: 75 - 91
Submitted on: Nov 27, 2022
|
Accepted on: Apr 30, 2023
|
Published on: Apr 30, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Agnieszka Karman, Andrzej Miszczuk, Urszula Bronisz, published by Faculty of Geography and Regional Studies, University of Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.