Have a personal or library account? Click to login
Addressing wind turbines obsolescence and waste estimation: A geographical approach to decision-making Cover

Addressing wind turbines obsolescence and waste estimation: A geographical approach to decision-making

Open Access
|Oct 2025

References

  1. Andalusian Energy Agency, AAE (2022). Datos energéticos de Andalucía 2022. https://www.agenciaandaluzadelaenergia.es/es/biblioteca/datosenergeticos-de-andalucia-2022-0
  2. Andalusian Energy Agency, AAE (2023). Anuario eólico 2023. https://aeeolica.org/wp-content/uploads/2023/07/AEE_ANUARIOEOLICO_2023_LIBRO-DIGITAL.pdf
  3. Andersen, N., Eriksson, O., Hillman, K., & Wallhagen, M. (2016). Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level. Energies, 9(12), 999. https://doi.org/10.3390/en9120999
  4. Albers, H., Greiner, S., Seifert, H., & Kühne, U. (2009) Recycling of wind turbine rotor blades. Fact or fiction? DEWI-Magazin. https://www.osti.gov/etdeweb/biblio/21214142
  5. Al-Mulali, U., Solarin, S. A., & Ozturk, I. (2016). Investigating the presence of the environmental Kuznets curve (EKC) hypothesis in Kenya: an autoregressive distributed lag (ARDL) approach. Natural Hazards, 80, 1729–1747. https://doi.org/10.1007/s11069-015-2050-x
  6. Balotari-Chiebáo, F., & Byholm, P. (2024). Quantifying land impacts of wind energy: a regional-scale assessment in Finland. Environment, Development and Sustainability, 1–14. https://doi.org/10.1007/s10668-024-05048-9
  7. Barral, M. A., Iglesias-Pascual, R., García, R., & Prados, M.-J. (2019). Planificación, participación e innovación social en los paisajes de las energías renovables. Estudios Geográficos, 80(289). https://estudiosgeograficos.revistas.csic.es/index.php/estudiosgeograficos/article/view/748/834
  8. Batel, S., & Devine-Wright, P. (2017). Energy colonialism and the role of the global in local responses to new energy infrastructures in the UK: A critical and exploratory empirical analysis. Antipode, 49(1), 3–22. https://doi.org/10.1111/anti.12261
  9. Bezbradica, M., Kerkvliet, H., Borbolla, I. M., & Lehtimäki, P. (2016). Introducing multi-criteria decision analysis for wind farm repowering: A case study on Gotland. In 2016 International Conference Multidisciplinary Engineering Design Optimization (MEDO) (pp. 1–8). IEEE. https://doi.org/10.1109/MEDO.2016.7746546
  10. Clementi, L. V. (2019). Tribulaciones de la primera generación eólica argentina: un análisis a partir de los parques de Mayor Buratovich y Centenario en el sur Bonaerense. http://hdl.handle.net/11336/132251
  11. Conaway, J. (2017). Be Aggressive with Wind Energy: Blow Away the Decommissioning Fears. Oil and Gas, Natural Resources, and Energy Journal, 2(6). https://digitalcommons.law.ou.edu/cgi/viewcontent.cgi?article=1079&context=onej
  12. Contreras, J. S., & Matarán Ruíz, A. (2023). Colonialismo energético. Territorios de sacrificio para la transición energética corporativa en Espańa, México, Noruega y el Sáhara Occidental. Icaria.
  13. Cooperman, A., Eberle, A., & Lantz, E. (2021). Wind turbine blade material in the United States: Quantities, costs, and end-of-life options. Resources, Conservation and Recycling, 168, 105439. https://doi.org/10.1016/j.resconrec.2021.105439
  14. Darabi, S., Masoud Monavari, S., Ali Jozi, S., Rahimi, R., & Alireza Vafaeinejad, A. (2022). Visual impact assessment of renewable energy developments with the application of multi-criteria decision-making method. Environment, Development and Sustainability, 25, 4437–4451. https://doi.org/10.1007/s10668-022-02209-6
  15. Delaney, E. L., Leahy, P. G., McKinley, J. M., Gentry, T. R., Nagle, A. J., Elberling, J., & Bank, L. C. (2023). Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades—A Review. Sustainability, 15(16), 12557. https://doi.org/10.3390/su151612557
  16. De Simón-Martín, M., Ciria-Garcés, T., Rosales-Asensio, E., & González-Martínez, A. (2022). Multi-dimensional barrier identification for wind farm repowering in Spain through an expert judgment approach. Renewable and Sustainable Energy Reviews, 161, 112387. https://doi.org/10.1016/j.rser.2022.112387
  17. De Simón-Martín, M., de la Puente-Gil, Á., Borge-Diez, D., Ciria-Garcés, T., & González-Martínez, A. (2019). Wind energy planning for a sustainable transition to a decarbonized generation scenario based on the opportunity cost of the wind energy: Spanish Iberian Peninsula as case study. Energy Procedia, 157, 1144–1163. https://doi.org/10.1016/j.egypro.2018.11.282
  18. Díaz, P. (2013). Energía eólica y territorio. Potencialidades para la Implantación eólica en Andalucía. Tesis doctoral. Inédita. Universidad de Sevilla.
  19. Díaz-Cuevas, P., Fernández, A., & Pita, M. F. (2016). Wind energy and landscape. Identification and quantification of landscapes affected by wind farms in Andalusia. Boletín De La Asociación De Geógrafos Espańoles, 71. https://doi.org/10.21138/bage.2288
  20. Dogan, E., & Seker, F. (2016). Determinants of CO2 emissions in the European Union: the role of renewable and non-renewable energy. Renewable Energy, 94, 429–439. https://doi.org/10.1016/j.renene.2016.03.078
  21. Eldiario.es (2020). Cómo las palas de aerogeneradores terminan en el vertedero en Espańa. https://www.eldiario.es/ballenablanca/365_dias/palas-aerogeneradores-terminan-vertedero-espana_1_6030579.html
  22. Eurostat (2023). Energy statistical countries datasheets. https://energy.ec.europa.eu/data-and-analysis/eu-energy-statistical-pocketbook-and-country-datasheets_en#country-datasheets
  23. European Commision, EC (2023a). Communication from the commission to the European Parliament, the council, the European economic and social committee and the committee of the regions. European Wind Power Action Plan. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52023DC0669
  24. European Commision, EC (2023b). Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as regards the promotion of energy from renewable sources, and repealing Council Directive (EU) 2015/652. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202302413
  25. Frantál, B., Frolova, M., & Lińán-Chacón, J. (2023). Conceptualizing the patterns of land use conflicts in wind energy development: Towards a typology and implications for practice. Energy Research and Social Science, 95, 102907, https://doi.org/10.1016/j.erss.2022.102907
  26. Frolova, M., Espejo Marín, C., Baraja Rodríguez, E., & Prados Velasco, M. J. (2014). Emerging renewable energy landscapes in Spain. Boletín De La Asociación De Geógrafos Espańoles, 66. https://doi.org/10.21138/bage.1788
  27. Frolova, M., Osorio-Aravena, J. C, Pérez-Pérez, B., & Pasqualetti, M. J. (2025). Abandoning renewable energy projects in Europe and South America: An emerging consideration in the recycling of energy landscapes. Energy for Sustainable Development, 85, 101676. https://doi.org/10.1016/j.esd.2025.101676
  28. Fuchs, C., Kasten, J., & Vent, M. (2020). Current state and future prospective of repowering wind turbines: an economic analysis. Energies, 13(12), 3048. https://doi.org/10.3390/en13123048
  29. Gobiernocanarias.org (2024). Mariano Zapata: “El comienzo del desmantelamiento del parque eólico de Montańa Mina será inminente”. https://www3.gobiernodecanarias.org/noticias/marianozapata-el-desmantelamiento-del-parque-eolico-de-montana-minasera-inminente
  30. Grau, L., Jung, C., & Schindler, D. (2021). Sounding out the repowering potential of wind energy–A scenario-based assessment from Germany. Journal of Cleaner Production, 293, 126094. https://doi.org/10.1016/j.jclepro.2021.126094
  31. Huso, M., Conkling, T., Dalthorp, D., Davis, M., Smith, H., Fesnock, A., & Katzner, T. (2021). Relative energy production determines effect of repowering on wildlife mortality at wind energy facilities. Journal of Applied Ecology, 58(6), 1284–1290. https://doi.org/10.1111/1365-2664.13853
  32. Institute of Statistics and Cartography of Andalusia (IECA) (2022). Ortofotografía aérea de Andalucía, 2020. https://www.juntadeandalucia.es/medioambiente/mapwms/REDIAM_Ortofoto_2020
  33. Institute of Statistics and Cartography of Andalusia (IECA) (2023). Datos de Referencia de Andalucía https://www.juntadeandalucia.es/institutodeestadisticaycartografia/dega/
  34. International Electrotechnical Commission (2005). UNE EN IEC Standard 61400-1 wind turbines – Part 1: design requirements.
  35. International Institute for Law and the Environment, IIDMA (2023). La planificación para el despliegue ordenado de renovables en Espańa: Análisis de Casos. https://iidma.org/wp-content/uploads/2023/12/Briefing-Renovables-1.pdf
  36. Jani, H. K., Kachhwaha, S. S., Nagababu, G., & Das, A. (2022). A brief review on recycling and reuse of wind turbine blade materials. Materials Today: Proceedings, 62(13), 7124–7130. https://doi.org/10.1016/j.matpr.2022.02.049
  37. Jefferson, M. (2018). Safeguarding rural landscapes in the new era of energy transition to a low carbon future. Energy Research & Social Science, 37, 191–197. https://doi.org/10.1016/j.erss.2017.10.005
  38. Jiménez, D., Valdes, K., González, R., & Montero-Prado, P. (2022). Planificación para la reutilización y reciclaje de las palas de aerogeneradores de fibra de vidrio y carbono. I+D Tecnológico, 18(2), 89–99. https://doi.org/10.33412/idt.v18.2.3695
  39. Lacal-Arántegui, R., Uihlein, A., & Yusta, J. M. (2020). Technology effects in repowering wind turbines. Wind Energy, 23(3), 660–675. https://doi.org/10.1002/we.2450
  40. Lacelotdigital.com (2023). Esta es la situación del abandonado parque eólico de Montańa Mina. https://www.lancelotdigital.com/lanzarote/esta-es-la-situacion-del-abandonado-parque-eolico-de-montana-mina
  41. Lichtenegger, G., Rentizelas, A. A., Trivyza, N., & Siegl, S. (2020). Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050. Waste management, 106, 120–131. https://doi.org/10.1016/j.wasman.2020.03.018
  42. Liu, P., & Barlow, C. Y. (2017). Wind turbine blade waste in 2050. Waste Management, 62, 229–240. https://doi.org/10.1016/j.wasman.2017.02.007
  43. Majewski, P., Florin, N., Jit, J., & Stewart, R. A. (2022). End-of-life policy considerations for wind turbine blades. Renewable and Sustainable Energy Reviews, 164, 112538. https://doi.org/10.1016/j.rser.2022.112538
  44. Márquez-Sobrino, P. (2024). Evolución y perspectiva de la normativa de gestión de residuos en las instalaciones de energía renovable. European Public & Social Innovation Review, 9, 1–19. https://doi.org/10.31637/epsir-2024-845
  45. Martini, R., & Xydis, G. (2023). Repurposing and recycling wind turbine blades in the United States. Environmental Progress & Sustainable Energy, 42(1), e13932. https://doi.org/10.1002/ep.13932
  46. Ministry for the Ecological Transition and the Demographic Challenge (MITECO) (2021). National Integrated Energy and Climate Plan (NIECP) 2021–2030. https://www.miteco.gob.es/es/prensa/pniec.html
  47. MITECO (2022). PERTE en Economía Circular 2022. https://www.prtr.miteco.gob.es/content/dam/prtr/es/perte/perteenec_alta_tcm30-537896.pdf
  48. MITECO (2023a). National Integrated Energy and Climate Plan (NIECP) 2023–2030. https://www.miteco.gob.es/es/energia/estrategia-normativa/pniec-23-30.html
  49. MITECO (2023b). Map of environmental sensitivity zoning for wind energy in Spain 2023.
  50. Moustakas, A., Georgiakakis, P., Kret, E., & Kapsalis, E. (2023). Wind turbine power and land cover effects on cumulative bat deaths. Science of The Total Environment, 164536. https://doi.org/10.1016/j.scitotenv.2023.164536
  51. Normann, S. (2021). Green colonialism in the Nordic context: Exploring Southern Saami representations of wind energy development. Journal of Community Psychology, 49(1), 77–94. http://do.org/10.1002/jcop.22422
  52. Nowakoski, G. A., & Loomis, D. G. (2023). The Power of Economies of Scale: A Wind Industry Case Study. Strategic Planning for Energy and the Environment, 42(3), 491–528. https://doi.org/10.13052/spee1048-5236.4234
  53. Ortegon, K., Nies, L. F., & Sutherland, J. W. (2013). Preparing for end of service life of wind turbines. Journal of Cleaner Production, 39, 191–199. https://doi.org/10.1016/j.jclepro.2012.08.022
  54. Pérez-Pérez, B., Díaz-Cuevas, P., Márquez-Sobrino, P., & Camarillo-Naranjo, J. M. (2024). La energía eólica en Andalucía. Incidencia en los espacios naturales, el paisaje y el territorio. Hacia una generación distribuida? Estudios geográficos, 85(297), 12. http://doi.org/10.3989/estgeogr.2024.1147
  55. Poggi, F., Firmino, A., & Amado, M. (2015). Moving Forward on Sustainable Energy Transitions: The Smart Rural Model. European Journal of Sustainable Development, 4(2), 43. https://doi.org/10.14207/ejsd.2015.v4n2p43
  56. Poggi, F., Firmino, A., & Amado, M. (2018). Planning renewable energy in rural areas: Impacts on occupation and land use. Energy, 155, 630–640. https://doi.org/10.1016/j.energy.2018.05.009
  57. Ragheb M. (2020). Decommissioning wind turbines. https://mragheb.com/NPRE%20475%20Wind%20Power%20Systems/Decommisioning%20Wind%20Turbines.pdf
  58. Red Eléctrica de Espańa, REE (2025). Informe del Sistema Eléctrico 2024: Potencia Instalada. https://www.sistemaelectrico-ree.es/informe-delsistema-electrico/potencia-instalada.
  59. Revilla-Cuesta, V., Skaf, M., Ortega-Lopez, V., & Manso, J. M. (2023). Raw-crushed wind-turbine blade: Waste characterization and suitability for use in concrete production. Resources, Conservation and Recycling, 198, 107160. https://doi.org/10.1016/j.resconrec.2023.107160
  60. Rodríguez-Sojo, J. (2022) El mapa de la electricidad en Espańa: qué comunidades producen más energía y cuáles son las mayores consumidoras? Cadena SER. https://cadenaser.com/nacional/2022/08/05/el-mapa-de-la-electricidad-en-espana-que-comunidades-producen-masenergia-y-cuales-son-las-mayores-consumidoras-cadena-ser
  61. Sarkodie, S. A., & Adams, S. (2018). Renewable energy, nuclear energy, and environmental pollution: accounting for political institutional quality in South Africa. Science of the total environment, 643, 1590–1601. https://doi.org/10.1016/j.scitotenv.2018.06.320
  62. Serri, L., Lembo, E., Airoldi, D., Gelli, C., & Beccarello, M. (2018). Wind energy plants repowering potential in Italy: technical-economic assessment. Renewable energy, 115, 382–390. https://doi.org/10.1016/j.renene.2017.08.031
  63. Silverman, B. W. (1986). Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability. https://doi.org/10.1201/9781315140919
  64. Smallwood, K. S. (2017). The challenges of addressing wildlife impacts when repowering wind energy projects. In J. Köppel (Ed.), Wind Energy and Wildlife Interactions: Presentations from the CWW2015 Conference (pp. 175–187). Springer International Publishing. https://doi.org/10.1007/978-3-319-51272-3_10
  65. Solbrekke, I. M., & Sorteberg, A. (2024). Norwegian offshore wind power – Spatial planning using multi-criteria decision analysis. Wind Energy, 27(1), 5–32. https://doi.org/10.1002/we.2871
  66. Szumilas-Kowalczyk, H., Pevzner, N., & Giedych, R. (2020). Long-term visual impacts of aging infrastructure: Challenges of decommissioning wind power infrastructure and a survey of alternative strategies. Renewable Energy, 150, 550–560. https://doi.org/10.1016/j.renene.2019.12.143
  67. Tazi, N., Kim, J., Bouzidi, Y., Chatelet, E., & Liu, G. (2019). Waste and material flow analysis in the end-of-life wind energy system. Resources, Conservation and Recycling, 145, 199–207. https://doi.org/10.1016/j.resconrec.2019.02.039
  68. Tegou, L.-I., Polatidis, H., & Haralambopoulos, D. A. (2010). Environmental management framework for wind farm siting: Methodology and case study. Journal of Environmental Management, 91(11), 2134–2147. http://doi.org/10.1016/j.jenvman.2010.05.010
  69. The Wind Power. https://www.thewindpower.net/
  70. Unnewehr, J. F., Jalbout, E., Jung, C., Schindler, D., & Weidlich, A. (2021). Getting more with less? Why repowering onshore wind farms does not always lead to more wind power generation–A German case study. Renewable energy, 180, 245–257. https://doi.org/10.1016/j.renene.2021.08.056
  71. van der Meulen, T. H., Bastein, T., Swamy, S. K., Saraswati, N., & Joustra, J. (2020). Offshore wind farm decommissioning. An orientation of possible economic activity in the south Holland Region and the Rotterdam Port Area. https://smartport.nl/wp-content/uploads/2021/01/SmPo_TNO-Offshore-windpark-decommissioningeng_final.pdf
  72. Windemer, R. (2019). Considering time in land use planning: An assessment of end-of-life decision making for commercially managed onshore wind schemes. Land Use Policy, 87, 104024. https://doi.org/10.1016/j.landusepol.2019.104024
  73. Windemer, R., & Cowell, R. (2021). Are the impacts of wind energy reversible? Critically reviewing the research literature, the governance challenges and presenting an agenda for social science. Energy Research & Social Science, 79, 102162. https://doi.org/10.1016/j.erss.2021.102162
  74. WindEurope (2020a). Decommissioning of Onshore Wind Turbines. Industry Guidance Document. WindEurope-decommissioning-ofonshore-wind-turbines.pdf
  75. WindEurope (2020b). Working towards a European standard for decommissioning wind turbines. https://windeurope.org/newsroom/news/working-towards-a-european-standard-for-decommissioning-wind-turbines/
  76. WindEurope (2020c). Circular Economy: Blade recycling is a top priority for the wind industry. https://windeurope.org/newsroom/news/blade-recycling-a-top-priority-for-the-wind-industry/
  77. Yue C.-D., & Wang S.-S. (2006). GIS-based evaluation of multifarious local renewable energy sources: a case study of the Chigu area of southwestern Taiwan. Energy Policy, 34(6), 730–742. http://doi.org/10.1016/j.enpol.2004.07.003
DOI: https://doi.org/10.2478/mgr-2025-0015 | Journal eISSN: 2199-6202 | Journal ISSN: 1210-8812
Language: English
Page range: 185 - 195
Submitted on: Dec 1, 2024
Accepted on: Jun 16, 2025
Published on: Oct 7, 2025
Published by: Czech Academy of Sciences, Institute of Geonics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Patricia Márquez-Sobrino, Belén Pérez-Pérez, Pilar Díaz-Cuevas, published by Czech Academy of Sciences, Institute of Geonics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.