Have a personal or library account? Click to login
Using the Relative Elevation Models to delimit the floodplain level development: The case of the braided-wandering Belá River, Slovakia Cover

Using the Relative Elevation Models to delimit the floodplain level development: The case of the braided-wandering Belá River, Slovakia

Open Access
|Oct 2024

References

  1. Armaş, I., Gogoaşe Nistoran, D. E., Osaci-Costache, G., & Braşoveanu, L. (2013). Morpho-dynamic evolution patterns of Subcarpathian Prahova River (Romania). Catena, 100, 83–99. https://doi.org/10.1016/j.catena.2012.07.007
  2. Beechie, T. J., Liermann, M., Pollock, M. M., Baker, S., & Davies, J. (2006). Channel pattern and river-floodplain dynamics in forested mountain river systems. Geomorphology, 78, 124–141. https://doi.org/10.1016/j.geomorph.2006.01.030
  3. Bertoldi, W., Zanoni, L., & Tubino, M. (2010). Assessment of morphological changes induced by flow and flood pulses in a gravel bed braided river: The Tagliamento River (Italy). Geomorphology, 114, 348–360. https://doi.org/10.1016/j.geomorph.2009.07.017
  4. Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka, J., Merz, B., …, & Živković, N. (2019). Changing climate both increases and decreases European river floods. Nature, 573, 108–111. https://doi.org/10.1038/s41586-019-1495-6
  5. Bollati, I. M., Pellegrini, L., Rinaldi, M., Duci, G., & Pelfini, M. (2014). Reach-scale morphological adjustments and stages of channel evolution: The case of the Trebbia River (northern Italy). Geomorphology, 221, 176–186. https://doi.org/10.1016/j.geomorph.2014.06.007
  6. Brierley, G. J. & Fryirs, K. A. (2005). Geomorphology and River Management: Applications of the River Styles Framework. John Wiley & Sons.
  7. Coe, D. (2016). Floodplain visualization using lidar-derived relative elevation models. Poster presented at the Digital Mapping Techniques Workshop, May 22–25, 2016, Tallahassee, Florida.
  8. Croke, J., Fryirs, K., & Thompson, C. (2016). Defining the floodplain in hydrologically-variable settings: implications for flood risk management. Earth Surface Processes and Landforms, 41(14), 2153–2164. https://doi.org/10.1002/esp.4014
  9. Dilts, T. E. (2015). Riparian Topography Tools for ArcGIS 10.1. University of Nevada Reno. http://www.arcgis.com/home/item.html?id=b13b3b40fa3c43d4a23a1a09c5fe96b9
  10. Dilts, T. E., Yang, J., & Weisberg, P. J. (2010). Mapping Riparian Vegetation with Lidar Data. ESRI 18–21.
  11. Dufour, S., Rinaldi, M., Piégay, H., & Michalon, A. (2015). How do river dynamics and human influences affect the landscape pattern of fluvial corridors? Lessons from the Magra River, Central-Northern Italy. Landscape and Urban Planning, 134, 107–118. https://doi.org/10.1016/j.landurbplan.2014.10.007
  12. Eder, M., Perosa, F., Hohensinner, S., Tritthart, M., Scheuer, S., Gelhaus, M., …, & Habersack, H., (2022). How can we identify Active, former, and potential floodplains? Methods and lessons learned from the Danube River. Water, 14. https://doi.org/10.3390/w14152295
  13. Gray, D., & Harding, J. S. (2007). Braided river ecology: A literature review of physical habitats and aquatic invertebrate communities. Science & Technical Pub., Department of Conservation.
  14. Greco, S. E., Fremier, A. K., Larsen, E. W., & Plant, R. E. (2007). A tool for tracking floodplain age land surface patterns on a large meandering river with applications for ecological planning and restoration design. Landscape and Urban Planning, 81, 354–373. https://doi.org/10.1016/j.landurbplan.2007.01.002
  15. Greco, S. E., Girvetz, E. H., Larsen, E. W., Mann, J. P., Tuil, J. L., & Lowney, C. (2008). Relative elevation topographic surface modelling of a large alluvial river floodplain and applications for the study and management of riparian landscapes. Landscape Research, 33, 461–486. https://doi.org/10.1080/01426390801949149
  16. Gurnell, A., Surian, N., & Zanoni, L. (2009). Multi-thread river channels: a perspective on changing European alpine river systems. Aquatic Sciences, 71, 253–265. https://doi.org/10.1007/s00027-009-9186-2
  17. Hajdukiewicz, H., & Wy¿ga, B. (2022). Twentieth-century development of floodplain forests in Polish Carpathian valleys: The by-product of transformation of river channels? Science of the Total Environment, 802, 149853. https://doi.org/10.1016/j.scitotenv.2021.149853
  18. Hajdukiewicz, H., Wy¿ga, B., Amirowicz, A., Oglęcki, P., Radecki-Pawlik, A., Zawiejska, J., & Mikuś, P. (2018). Ecological state of a mountain river before and after a large flood: Implications for river status assessment. Science of the Total Environment, 610, 244–257. https://doi.org/10.1016/j.scitotenv.2017.07.162
  19. Haschenburger, J. K., & Cowie, M. (2009). Floodplain stages in the braided Ngaruroro River, New Zealand. Geomorphology, 103, 466–475. https://doi.org/10.1016/j.geomorph.2008.07.016
  20. Hauer, F. R., Locke, H., Dreitz, V. J., Hebblewhite, M., Lowe, W. H., Muhlfeld, C. C., ..., & Rood, S. B. (2016). Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Science Advances, 2(6), e1600026. https://doi.org/10.1126/sciadv.1600026
  21. Hayakawa, Y. S., & Oguchi, T. (2006). DEM-based identification of fluvial knickzones and its application to Japanese mountain rivers. Geomorphology, 78, 90–106. https://doi.org/10.1016/j.geomorph.2006.01.018
  22. Huggett, R. J. (2011). Fundamentals of Geomorphology. Routledge. https://doi.org/10.4324/9780203860083
  23. Jain, V., Fryirs, K., & Brierley, G. (2008). Where do floodplains begin? The role of total stream power and longitudinal profile form on floodplain initiation processes. Geological Society of America Bulletin, 120(1–2), 127–141. https://doi.org/10.1130/B26092.1
  24. Jakubínský, J., Prokopova, M., Raška, P., Salvati, L., Bezak, N., Cudlín, O., …, & Lepeška, T. (2021). Managing floodplains using nature-based solutions to support multiple ecosystem functions and services. Wiley Interdisciplinary Reviews: Water, 8(5), e1545. https://doi.org/10.1002/wat2.1545
  25. Jones, J. L. (2006). Side channel mapping and fish habitat suitability analysis using lidar topography and orthophotography. Photogrammetric Engineering and Remote Sensing, 72(11), 1202.
  26. Kadlec, J., Grygar, T., Svétlik, I., Ettler, V., Mihaljevič, M., Diehl, J. F., ..., & Svitavská-Svobodová, H. (2009). Morava River floodplain development during the last millennium, Strážnické Pomoraví, Czech Republic. The Holocene, 19(3), 499–509. https://doi.org/10.1177/0959683608101398
  27. Kidová, A. (2010). Vývoj antropogénneho vplyvu na morfológiu koryta vodného toku – príklad rieky Belej. In: Zborník vedeckých prác doktorandov a mladých vedeckých pracovníkov “Mladí vedci 2010“ (pp. 7).
  28. Kidová, A., & Lehotský, M. (2012). Časovo-priestorová variabilita morfológie divočiaceho a migrujúceho vodného toku Belá. Geografický časopis, 64(4), 311–333.
  29. Kidová, A., & Lehotský, M. (2013). The Belá river fluvial system. Geomorphologica Slovaca et Bohemica, 1, 90–98.
  30. Kidová, A., Lehotský, M., & Rusnák, M. (2016a). Morfologické zmeny a manažment divočiaco-migrujúceho vodného toku Belá. Geomorphologica Slovaca et Bohemica, 16, 1–60.
  31. Kidová, A., Lehotský, M., & Rusnák, M. (2016b). Geomorphic diversity in the braided-wandering Belá River, Slovak Carpathians, as a response to flood variability and environmental changes. Geomorphology, 272, 137–149. https://doi.org/10.1016/j.geomorph.2016.01.002
  32. Kidová, A., Radecki-Pawlik, A., Rusnák, M., & Plesiñski, K. (2021). Hydromorphological evaluation of the river training impact on a multi-thread river system (Belá River, Carpathians, Slovakia). Scientific Reports, 11(1), 6289. https://doi.org/10.1038/s41598-021-85805-2
  33. Kiss, T., Nagy, Z., & Balogh, M. (2017). Floodplain level development induced by human activity-case study in the lower Maros/Mures river, Romania and Hungary. Carpathian Journal of Earth and Environmental Sciences, 12(1), 83–93.
  34. Křížek, M., Hartvich, F., Chuman, T., Šefrna, L., Šobr, M., & Zádorová, T. (2006). Floodplain and its delimitation. Geografie – Sbornik české geografické společnosti, 111(3), 260–273. https://doi.org/10.37040/geografie2006111030260
  35. Krzemieñ, K., Gorczyca, E., Sobucki, M., Liro, M., & Łyp, M. (2015). Effects of environmental changes and human impact on the functioning of mountain river channels, Carpathians, southern Poland. Annals of Warsaw University of Life Sciences-SGGW. Land Reclamation, 47(3), 249–260. https://doi.org/10.1515/sggw-2015-0029
  36. Lehotský, M., Kidová, A., & Rusnák, M. (2015). Slovensko-anglické názvoslovie morfológie vodných tokov. Geomorphol. Geomorphologica Slovaca et Bohemica, 15, 61.
  37. Lehotský, M., Rusnák, M., Kidová, A., & Dudžák, J. (2018). Multitemporal assessment of coarse sediment connectivity along a braided-wandering river. Land Degradation & Development, 29(4), 1249–1261. https://doi.org/10.1002/ldr.2870
  38. Lóczy, D., Pirkhoffer, E., & Gyenizse, P. (2012). Geomorphometric floodplain classification in a hill region of Hungary. Geomorphology, 147–148, 61–72. https://doi.org/10.1016/j.geomorph.2011.06.040
  39. Majerčáková, O., Škoda, P., & Danáčová, Z. (2007). Vývoj vybraných hydrologických a zrážkových charakteristík za obdobia 1961–2000 a 2001–2006 v oblasti Vysokých Tatier. Meteorologický časopis, 10(4), 205–210.
  40. Marti, C., & Bezzola, G. R. (2006). Bed load transport in briaded gravel-bed rivers, In G. Sambrook Smith et al. (Eds): Braided Rivers: Process, Deposits, Ecology and Management (pp. 199–215). Blackwell Publishing.
  41. Mitchell, A., & Griffin, L. S. (2021). Spatial Measurements and Statistics. ESRI Press.
  42. Moretto, J., Rigon, E., Mao, L., Delai, F., Picco, L., & Lenzi, M. A. (2012). Assessing morphological changes in gravel bed rivers using LiDAR data and colour bathymetry. IAHS Public, 356, 419–427.
  43. Nanson, G. C., & Croke, J. C. (1992). A genetic classification of floodplains. Geomorphology, 4(6), 459–486. https://doi.org/10.1016/0169-555X(92)90039-Q
  44. Nardi, L., & Rinaldi, M. (2015). Spatio-temporal patterns of channel changes in response to a major flood event: the case of the Magra River (central–northern Italy). Earth Surface Processes and Landforms, 40(3), 326–339. https://doi.org/10.1002/esp.3636
  45. Olson, P. L., Legg, N. T., Abbe, T. B., Reinhart, M. A., & Radloff, J. K. (2014). A methodology for delineating planning-level channel migration zones (No. 14-06-025). Washington (State). Dept. of Ecology.
  46. Radecki-Pawlik, A., Kidová, A., Lehotsky, M., Rusnák, M., Manson, R., & Radecki-Pawlik, B. (2019). Gravel and boulders mining from mountain stream beds. In E3S Web of Conferences (Vol. 106, p. 01005). EDP Sciences (pp. 1–11). https://doi.org/10.1051/e3sconf/201910601005
  47. Rãdoane, M., Obreja, F., Cristea, I., & Mihailã, D. (2013). Changes in the channel-bed level of the eastern Carpathian rivers: Climatic vs. human control over the last 50 years. Geomorphology, 193, 91–111. https://doi.org/10.1016/j.geomorph.2013.04.008
  48. Reinfelds, I., & Nanson, G. (1993). Formation of braided river floodplains, Waimakariri River, New Zealand. Sedimentology, 40(6), 1113–1127. https://doi.org/10.1111/j.1365-3091.1993.tb01382.x
  49. Rhoads, B. L. (2020). River dynamics: geomorphology to support management. Cambridge University Press. https://doi.org/10.15201/hungeobull.69.3.6
  50. Roux, C., Alber, A., Bertrand, M., Vaudor, L., & Piégay, H. (2015). “FluvialCorridor”: A new ArcGIS toolbox package for multiscale riverscape exploration. Geomorphology, 242, 29–37. https://doi.org/10.1016/j.geomorph.2014.04.018
  51. Rusnák, M., Kaňuk, J., Kidová, A., Šašak, J., Lehotský, M., Pöppl, R., & Šupinský, J. (2020). Channel and cut-bluff failure connectivity in a river system: Case study of the braided-wandering Belá River, Western Carpathians, Slovakia. Science of the Total Environment, 733, 139409. https://doi.org/10.1016/j.scitotenv.2020.139409
  52. Rusnák, M., Sládek, J., Kidová, A., & Lehotský, M. (2018). Template for high-resolution river landscape mapping using UAV technology. Measurement, 115, 139–151. https://doi.org/10.1016/j.measurement.2017.10.023
  53. Slaughter, S. L., & Hubert, I. J. (2014). Geomorphic Mapping of the Chehalis River Floodplain, Cosmopolis to Pe Ell, Grays Harbor, Thurston, and Lewis Counties, Washington.
  54. Tockner, K., Malard, F., & Ward, J. V. (2000). An extension of the flood pulse concept. Hydrological processes, 14(16–17), 2861–2883. https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2861::AIDHYP124>3.0.CO;2-F
  55. Tranmer, A. W., Tonina, D., Benjankar, R., Tiedemann, M., & Goodwin, P. (2015). Floodplain persistence and dynamic-equilibrium conditions in a canyon environment. Geomorphology 250, 147–158. https://doi.org/10.1016/j.geomorph.2015.09.001
  56. Whited, D. C., Lorang, M. S., Harner, M. J., Hauer, F. R., Kimball, J. S., & Stanford, J. A. (2007). Climate, hydrologic disturbance, and succession: Drivers of floodplain pattern. Ecology, 88, 940–953. https://doi.org/10.1890/05-1149
  57. Wohl, E. (2006). Human impacts to mountain streams. Geomorphology, 79, 217–248. https://doi.org/10.1016/j.geomorph.2006.06.020
  58. Wy¿ga, B., Zawiejska, J., & Hajdukiewicz, H. (2016). Multi-thread rivers in the Polish Carpathians: occurrence, decline and possibilities of restoration. Quaternary International, 415, 344–356. https://doi.org/10.1016/j.quaint.2015.05.015
  59. Zaprowski, B. J., Pazzaglia, F. J., & Evenson, E. B. (2005). Climatic influences on profile concavity and river incision. Journal of Geophysical Research: Earth Surface, 110(F3). https://doi.org/10.1029/2004JF000138
  60. Ziliani, L., & Surian, N. (2012). Evolutionary trajectory of channel morphology and controlling factors in a large gravel-bed river. Geomorphology, 173, 104–117. https://doi.org/10.1016/j.geomorph.2012.06.001
DOI: https://doi.org/10.2478/mgr-2024-0016 | Journal eISSN: 2199-6202 | Journal ISSN: 1210-8812
Language: English
Page range: 187 - 200
Submitted on: Feb 21, 2024
Accepted on: Sep 17, 2024
Published on: Oct 6, 2024
Published by: Czech Academy of Sciences, Institute of Geonics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Peter Labaš, Anna Kidová, Hamid Afzali, published by Czech Academy of Sciences, Institute of Geonics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.