Have a personal or library account? Click to login
A Combined-Index Study on the Influence of Earthquake Incidence Angle on the Seismic Performance of Reinforced Concrete Plan-Asymmetric Buildings Cover

A Combined-Index Study on the Influence of Earthquake Incidence Angle on the Seismic Performance of Reinforced Concrete Plan-Asymmetric Buildings

Open Access
|Feb 2022

References

  1. Smeby W. & Der Kiureghian(1985). Modal combination rules for multicomponent earthquake excitation. Earthquake Engineering and Structural Dynamics, 13(1), 1-12. DOI: 10.1002/eqe.4290130103.10.1002/eqe.4290130103
  2. Cheng F. Y. & Ger J. F. (1990). The effect of multicomponent seismic excitation and direction on response behavior of 3-D structures. In Proceedings of the Fourth U.S. National Conference on Earthquake Engineering, 20-24 May 1990 (pp. 5-14). California, Palm Springs.
  3. Lopez O.A. & Torres R. (1997). The critical angle of seismic incidence and maximum structural response. Earthquake Engineering and Structural Dynamics, 26(9), 881-94. DOI: 10.1002/(SICI)1096-9845(199709)26:9<881::AID-EQE674>3.0.CO;2-R.10.1002/(SICI)1096-9845(199709)26:9<881::AID-EQE674>3.0.CO;2-R
  4. Lopez OA., Chopra AK. & Hernandez JJ. (2000). Critical response of structures to multicomponent earthquake excitation. Earthquake Engineering and Structural Dynamics, 26(12), 1759-1778. DOI: 10.1002/1096-9845(200012)29:12<1759::AID-EQE984>3.0.CO;2-K.10.1002/1096-9845(200012)29:12<1759::AID-EQE984>3.0.CO;2-K
  5. Tezcan SS. & Alhan C. (2001). Parametric analysis of irregular structures under seismic loading according to the new Turkish Earthquake Code. Engineering Structures, 23(6), 600–9. DOI: 10.1016/S0141-0296(00)00084-5.10.1016/S0141-0296(00)00084-5
  6. Khoshnoudian F. & Poursha M. (2004). Responses of three-dimensional buildings under bi-directional and unidirectional seismic excitations. In Proceedings of the thirteenth world conference on earthquake engineering, 1-6 August 2004. Vancouver, B.C., Canada.
  7. Athanatopoulou AM. (2005). Critical orientation of three correlated seismic components. Engineering Structures, 27(2), 301–12. DOI: 10.1016/j.engstruct.2004.10.011.10.1016/j.engstruct.2004.10.011
  8. Abdel Raheem S. E., Ahmed M. M. M., Ahmed M. M. & Abdel-shafy A. G. A. (2018). Evaluation of plan configuration irregularity effects on seismic response demands of L-shaped MRF buildings. Bulletin of Earthquake Engineering, 16(9), 3845–3869. DOI: 10.1007/s10518-018-0319-7.10.1007/s10518-018-0319-7
  9. Tsourekas A. & Athanatopoulou A. & Kostinakis k. (2021). Maximum mean square response and critical orientation under bi-directional seismic excitation. Engineering Structures, 233(1), 111881. DOI: 10.1016/j.engstruct.2021.111881.10.1016/j.engstruct.2021.111881
  10. Hosseini M. & Salemi A. (2008). Studying the effect of earthquake excitation on the internal forces of steel building’s elements by using nonlinear time history analyses. In Proceedings of the 14th World Conference on Earthquake Engineering, 12-17 October 2008. Beijing, China.
  11. Ahmet C., Ebru K. (2017). Earthquake incidence angle influence on seismic performance of reinforced concrete buildings. Sigma Journal of Engineering and Natural Sciences, 35(4), 609-631. “Retrieved from https://eds.yildiz.edu.tr/AjaxTool/GetArticleByPublishedArticleId?PublishedArticleId=2505 in July 2021”.
  12. European Union, CEN. (2004). EC8 (EN1998-1:2004) - Guide to Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings. Brussels. European Committee for Standardization.
  13. Rigato A.B. & Medina R.A (2007). Influence of angle of incidence on seismic demands for inelastic single-storey structures subjected to bi-directional ground motions. Engineering Structures, 29(10), 2593-2601. DOI: 10.1016/j.engstruct.2007.01.008.10.1016/j.engstruct.2007.01.008
  14. Nguyen V.T. & Kim D. (2013). Influence of incident angles of earthquakes on inelastic responses of asymmetric-plan structures. Structural Engineering and Mechanics, 45(3), 373-389. DOI: 10.12989/sem.2013.45.3.373.10.12989/sem.2013.45.3.373
  15. Magliulo G., Petrone C & Maddaloni G. (2014). Influence of earthquake direction on the seismic response of irregular plan RC frame buildings. Earthquake Engineering and Engineering Vibration, 13(2), 243-256. DOI: 10.1007/s11803-014-0227-z.10.1007/s11803-014-0227-z
  16. Cantagallo C., Camata G. & Spacone E. (2015). Influence of ground motion selection methods on seismic directionality effects. Earthquakes and Structures, 8(1), 185–204. DOI: 10.12989/eas.2015.8.1.185.10.12989/eas.2015.8.1.185
  17. Fujii K. (2020). Evaluating the Effect of the Directivity of Bidirectional Ground Motion on an Irregular Building: The Former Uto City Hall. In Proceedings 9th European Workshop on the Seismic Behaviour of Irregular and Complex Structures Lisbon, 15-16 December 2020 (pp. 156-165). Lisbon.
  18. Kassem M., Nazri F. & Farsangi E. (2019). Development of seismic vulnerability index methodology for reinforced concrete buildings based on nonlinear parametric analyses. MethodsX, 6, 199-211. DOI: 10.1016/j.mex.2019.01.006.10.1016/j.mex.2019.01.006636060930766800
  19. European Union, CEN. (2004). EC2 (1992-1-1: 2004) - Guide to Design of concrete structures - Part 1-1: General rules and rules for buildings. Brussels. European Committee For Standardization
  20. Crainic L. & Munteanu M. (2013). Seismic Performance of Concrete Buildings. London, UK. Taylor & Francis Ltd.
  21. CSI (2017). ETABS [Structural and Earthquake Engineering Computer Software]. California: Computers and Structures, Inc.
  22. CSI (2019). SAP2000 [Structural and Earthquake Engineering Computer Software]. California: Computers and Structures, Inc.
  23. Anagnostopoulos S., Kyrkos M. & Stathopoulos K. (2015). Earthquake induced torsion in buildings: critical review and state of the art. Earthquakes and Structures, 2(2), 305-377. DOI:10.12989/eas.2015.8.2.30510.12989/eas.2015.8.2.305
  24. Mander J. B., Priestley M. J. N. & Park R. (1988a). Theoretical Stress-Strain Model for Confined Concrete. Journal of Structural Engineering, 114: 1804-1826. DOI: 10.1061/(ASCE) 0733-9445(1988)114:8(1804).
  25. SAP2000 (2010). Technical Note: Material Stress-Strain Curves. Computers and Structures, Inc. CSI Analysis Reference Manual for SAP2000.
  26. FEMA 356 (2000). Prestandard and Commentary for Seismic Rehabilitation of Buildings. Prepared by the American Society of Civil Engineers for the Federal Emergency Management Agency, Washington, D.C.
  27. ASCE 7-16 (2016). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, Virginia: American Society of Civil Engineers.
  28. F.I. Belheouane & M. Bensaibi. (2013). Assessment of vulnerability curves using vulnerability index method for reinforced concrete structures, World Acad. Sci. Eng. Technol. Int. J. Civ. Archit. Sci. Eng; 7:153–156.
  29. MDLPA. (2013). P100-1/2013-Seismic Design Code - Part 1: Design rules for buildings. Bucharest (in Romanian).
  30. California Earthquake Authority, Caltrans Department of Transportation & Pacific Gas and Electric Company. (2013, April). Pacific Earthquake Engineering Research Center (PEER). Retrieved Jun 17, 2021, from https://ngawest2.berkeley.edu/.
  31. Lavan O. & De Stefano M. (2013). Seismic Behaviour and Design of Irregular and Complex Civil Structures. Vol. 24 (Netherlands: Springer) ISBN 978-94-007-5377-8.10.1007/978-94-007-5377-8
Language: English
Page range: 40 - 54
Published on: Feb 2, 2022
Published by: Technical University of Civil Engineering of Bucharest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Arif Weaam, Iolanda-Gabriela Craifaleanu, published by Technical University of Civil Engineering of Bucharest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.