References
- Emile Y. (1994). Etude théorique et expérimentale du flambement des pieux. Thèse de doctorat, Ecole Nationale des Ponts et Chaussées, France.
- Stringer M., (2011). The Axial Behaviour of Piled Foundations in Liquefiable soil. Doctor of Philosophy, University of Cambridge.
- Guillermo A. L. J. (2019). Static and dynamic behavior of pile supported structures in soft soil. Thèse de doctorat, Universite Grenoble Alpes, France.
- Tomlinson M. & Woodward J. (2015). Pile design and construction practice. (6th ed.), Press is an imprint of Taylor & Francis Group.
- Salama M. & Basha A. (2019). Elastic buckling loads of partially embedded piles in cohesive soil. Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-019-0198-z.10.1007/s41062-019-0198-z
- Mladen Ć., Boris F. & Simon S. (2012). Buckling analysis of 3d model of slender pile in interaction with soil using finite element method. Structural Integrity and Life, 12(3), 221–232.
- Moghaddam A., Nayeri A. & Mirhosseini S.M. (2018). Evaluation of pile’s buckling under axial load by b-spline method and comparison with finite element method and exact solution. Journal of Applied Engineering Sciences, 8(21), 29-34.10.2478/jaes-2018-0015
- Junxiu L., Xianfeng S., Baoquan C., Guangyong C. & Kai L. (2020, July). Study on Buckling Behavior of Tapered Friction Piles in Soft Soils with Linear Shaft Friction. Advances in Civil Engineering, https://doi.org/10.1155/2020/8865656.10.1155/2020/8865656
- Guang-bao F., Wen-chao L. & Yun-gang Z. (2013). Numerical Eigenvalue of Partially Embedded Piles. 18, 2595-2603.
- Davisson, M. T. (1963). Estimating buckling loads for piles. Proc. Second Pan American Conference on Soil Mechanics and Foundation Engineering, 1, 351-371.
- Davisson, M. T. & Gill, H. L. (1963). Laterally loaded piles in a layered soil system, Proc. American Society of Civil Engineers, 89(3), 63-94.
- Hetenyi, M. (1946). Beams on elastic foundation. Ann arbor: University of Michigan press.
- Prakash, S. (1962). Behavior of pile groups subjected to lateral loads. Ph.D. thesis, University of Illinois.
- Reddy, A. S. & Valsangkar, A. J. (1970). Buckling of Fully and Partially Embedded Piles. J. Soil Mesh. Found. Div., ASCE, 96(6), 1951-1965.10.1061/JSFEAQ.0001480
- Sriram, K. (2001). Critical buckling loads of concrete piles in clay. Journal of Structural Engineering, 28(3), 153-156.
- Jianjun M., Jian P., Lianhua W. & Yueyu Z. (2013). Critical load and buckling of the single pile foundation subjected to the vertical load. Journal of Physics, The 4th Symposium on the Mechanics of Slender Structures.
- Chen Y., Chen L., Xu K., Liu L. & Ng Charles W. W. (2013, November). Study on critical buckling load calculation method of piles considering passive and active earth pressure. Structural Engineering & Mechanics, DOI: 10.12989/sem.2013.48.3.367.10.12989/sem.2013.48.3.367
- Xianfeng S., Ximing C. & Junxiu L. (2019). Buckling of Rock-Socketed Piles Embedded in Soft Soils. IOP Conf. Series: Earth and Environmental Science 371(2019) 022058, DOI:10.1088/1755-1315/371/2/02205810.1088/1755-1315/371/2/022058
- Vlora S., Luljeta B., Burbuqe S. & Bajram S. (2014, February). Influence of Soil Stiffness and of End Support Conditions of a Pile in its Buckling Force. International Journal of Current Engineering and Technology, 4(1).
- Khodair Y. & Abdel-Mohti A. (2014, September). Numerical Analysis of Pile–Soil Interaction under Axial and Lateral Loads. International Journal of Concrete Structures and Materials, 8(3), 239–249, DOI: 10.1007/s40069-014-0075-2.10.1007/s40069-014-0075-2
- Jesmani, M., Nabavi, S.H. & Kamalzare, M. (2014). Numerical analysis of buckling behavior of concrete piles under axial load embedded in sand. Arab. J. Sci.Eng., 39(4), 2683-269310.1007/s13369-014-0970-5
- Tao D., Qijian L. & Ming H. (2017). Buckling of Fully Embedded Single Piles by Using the Modified Vlasov Foundation Model. International Journal of Structural Stability and Dynamics, 17(1), DOI:10.1142/S0219455417500079.10.1142/S0219455417500079
- Nadeem M., Chakraborty T. & Matsagar V. (2014). Nonlinear Buckling Analysis of Slender Piles with Geometric Imperfections. American Society of Civil Engineers, DOI:10.1061/(ASCE)GT.1943-5606.0001189.10.1061/(ASCE)GT.1943-5606.0001189
- Vlora S., Luljeta B., Bajram S. & Burbuqe S. (2014, February). Analysis of Buckling of Piles Fully Embedded in Ground According to Finite Element Method. International Journal of Current Engineering and Technology, 4(1).
- Vlora S., Luljeta B., Burbuqe S. & Bajram S. (2013, May). Buckling of fully embedded piles in the ground subject to axial compression force. 2nd International Balkans Conference on Challenges of Civil Engineering, BCCCE, 23-25, EPOKA University, Tirana, ALBANIA.
- Foriero A. & Bayati Z. (2018). Three dimensional FEM buckling analyses of piles embedded in various soil types. Structural Integrity and Life, 18(3), 171–179.
- Mandel J. (1936). Flambage au sein d’un milieu élastique, Annales des Ponts et Chaussées, 9, 295-335.
- Cummings, A E (1939). Flambement au sein d’un milieu élastique. Highway Research Board Proceedings, 18(2), 112–119.
- Bhattacharya S., Carrington T.M., & Aldridge T.R. (2005). Buckling considerations in pile design. Taylor & Francis Group.
- Bogumil, W., Wojciech, K. & Mikolaj, W. (2013). Nonlinear analysis of pile displacement using the finite element method. Technical Transactions Civil Engineering, 2(B), 138-141.
- ABAQUS (2013). Analysis user’s manual online documentation. Dassault Systèmes Simulia Corp, Providence.
- Helwany, S., (2007). Applied Soil Mechanics with ABAQUS Applications. John Wiley & Sons, Inc. ISBN: 978-0-471-79107-2.10.1002/9780470168097
- Xiao-guo Z., Ming-xin L. & Yun-gang Z. (2014)”Numerical Study for Buckling of Pile with Different Distributions of Lateral Subgrade Reaction”, EJGE, Bund. M, 19.
- Yun-gang, Z., Hong, W. & Fu-chen, L. (2012). Modeling Vertical Bearing Capacity of Pile Foundation by Using ABAQUS, Bund. L, 17, 1855-1865.
- Sang-woo, K., Yong-nam K. & Beom-soo K. (2012). Influence of Mesh Density and Element Type on the Accuracy of FE Analysis of Periodic Cellular Structures. Advanced Materials research, 445, 583-588.https://doi.org/[10.4028/www.scientific.net/AMR.445.583]
- Shashikant T. & Bindu R. S. (2015, May). Effect of Mesh Size on Finite Element Analysis of Plate Structure. International Journal of Engineering Science and Innovative Technology (IJESIT), 4(3).
- Picard M. (2012). Comportement et modelisation p-y des argiles sensibles du Québec : études expérimentale et paramétrique. Mémoire de maîtrise en génie civil, Université Laval, Québec, Canada.
- Seyed A. & Ehsan T. (2015). Numerical and theoretical study of plate load test to define coefficient of subgrade reaction. Journal of geotechnical and transportation engineering, 1(2).
- Kanakeswararao T. & Ganesh B. (2017, April). Analysis of Pile Foundation Subjected to Lateral and Vertical Loads. international journal of engineering trends and technology, 46(2).10.14445/22315381/IJETT-V46P219
- Jaehwan, L. & Sangseom, J. (2016). Experimental study of Estimating the Subgrade Reaction Modulus on Jointed Rock Foundation. Rock Mech Rock Eng, 2055-2064.https://doi.org/[10.1007/s00603-015-0905-9]
- Jamshid, S. & Maryam, A. (2009). Comparative Study of methods of Determination of coefficient of Subgrade Reaction. EJGE, Bund. E.
- Selvadurai. (1979). Elastic Analysis of Soil-Foundation Interaction. Elsevier Scientific Publication.