Have a personal or library account? Click to login
Buckling Loads of Fully Embedded Pile in Clayey Soil Based on the Finite Element Method Cover

Buckling Loads of Fully Embedded Pile in Clayey Soil Based on the Finite Element Method

Open Access
|Feb 2022

References

  1. Emile Y. (1994). Etude théorique et expérimentale du flambement des pieux. Thèse de doctorat, Ecole Nationale des Ponts et Chaussées, France.
  2. Stringer M., (2011). The Axial Behaviour of Piled Foundations in Liquefiable soil. Doctor of Philosophy, University of Cambridge.
  3. Guillermo A. L. J. (2019). Static and dynamic behavior of pile supported structures in soft soil. Thèse de doctorat, Universite Grenoble Alpes, France.
  4. Tomlinson M. & Woodward J. (2015). Pile design and construction practice. (6th ed.), Press is an imprint of Taylor & Francis Group.
  5. Salama M. & Basha A. (2019). Elastic buckling loads of partially embedded piles in cohesive soil. Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-019-0198-z.10.1007/s41062-019-0198-z
  6. Mladen Ć., Boris F. & Simon S. (2012). Buckling analysis of 3d model of slender pile in interaction with soil using finite element method. Structural Integrity and Life, 12(3), 221–232.
  7. Moghaddam A., Nayeri A. & Mirhosseini S.M. (2018). Evaluation of pile’s buckling under axial load by b-spline method and comparison with finite element method and exact solution. Journal of Applied Engineering Sciences, 8(21), 29-34.10.2478/jaes-2018-0015
  8. Junxiu L., Xianfeng S., Baoquan C., Guangyong C. & Kai L. (2020, July). Study on Buckling Behavior of Tapered Friction Piles in Soft Soils with Linear Shaft Friction. Advances in Civil Engineering, https://doi.org/10.1155/2020/8865656.10.1155/2020/8865656
  9. Guang-bao F., Wen-chao L. & Yun-gang Z. (2013). Numerical Eigenvalue of Partially Embedded Piles. 18, 2595-2603.
  10. Davisson, M. T. (1963). Estimating buckling loads for piles. Proc. Second Pan American Conference on Soil Mechanics and Foundation Engineering, 1, 351-371.
  11. Davisson, M. T. & Gill, H. L. (1963). Laterally loaded piles in a layered soil system, Proc. American Society of Civil Engineers, 89(3), 63-94.
  12. Hetenyi, M. (1946). Beams on elastic foundation. Ann arbor: University of Michigan press.
  13. Prakash, S. (1962). Behavior of pile groups subjected to lateral loads. Ph.D. thesis, University of Illinois.
  14. Reddy, A. S. & Valsangkar, A. J. (1970). Buckling of Fully and Partially Embedded Piles. J. Soil Mesh. Found. Div., ASCE, 96(6), 1951-1965.10.1061/JSFEAQ.0001480
  15. Sriram, K. (2001). Critical buckling loads of concrete piles in clay. Journal of Structural Engineering, 28(3), 153-156.
  16. Jianjun M., Jian P., Lianhua W. & Yueyu Z. (2013). Critical load and buckling of the single pile foundation subjected to the vertical load. Journal of Physics, The 4th Symposium on the Mechanics of Slender Structures.
  17. Chen Y., Chen L., Xu K., Liu L. & Ng Charles W. W. (2013, November). Study on critical buckling load calculation method of piles considering passive and active earth pressure. Structural Engineering & Mechanics, DOI: 10.12989/sem.2013.48.3.367.10.12989/sem.2013.48.3.367
  18. Xianfeng S., Ximing C. & Junxiu L. (2019). Buckling of Rock-Socketed Piles Embedded in Soft Soils. IOP Conf. Series: Earth and Environmental Science 371(2019) 022058, DOI:10.1088/1755-1315/371/2/02205810.1088/1755-1315/371/2/022058
  19. Vlora S., Luljeta B., Burbuqe S. & Bajram S. (2014, February). Influence of Soil Stiffness and of End Support Conditions of a Pile in its Buckling Force. International Journal of Current Engineering and Technology, 4(1).
  20. Khodair Y. & Abdel-Mohti A. (2014, September). Numerical Analysis of Pile–Soil Interaction under Axial and Lateral Loads. International Journal of Concrete Structures and Materials, 8(3), 239–249, DOI: 10.1007/s40069-014-0075-2.10.1007/s40069-014-0075-2
  21. Jesmani, M., Nabavi, S.H. & Kamalzare, M. (2014). Numerical analysis of buckling behavior of concrete piles under axial load embedded in sand. Arab. J. Sci.Eng., 39(4), 2683-269310.1007/s13369-014-0970-5
  22. Tao D., Qijian L. & Ming H. (2017). Buckling of Fully Embedded Single Piles by Using the Modified Vlasov Foundation Model. International Journal of Structural Stability and Dynamics, 17(1), DOI:10.1142/S0219455417500079.10.1142/S0219455417500079
  23. Nadeem M., Chakraborty T. & Matsagar V. (2014). Nonlinear Buckling Analysis of Slender Piles with Geometric Imperfections. American Society of Civil Engineers, DOI:10.1061/(ASCE)GT.1943-5606.0001189.10.1061/(ASCE)GT.1943-5606.0001189
  24. Vlora S., Luljeta B., Bajram S. & Burbuqe S. (2014, February). Analysis of Buckling of Piles Fully Embedded in Ground According to Finite Element Method. International Journal of Current Engineering and Technology, 4(1).
  25. Vlora S., Luljeta B., Burbuqe S. & Bajram S. (2013, May). Buckling of fully embedded piles in the ground subject to axial compression force. 2nd International Balkans Conference on Challenges of Civil Engineering, BCCCE, 23-25, EPOKA University, Tirana, ALBANIA.
  26. Foriero A. & Bayati Z. (2018). Three dimensional FEM buckling analyses of piles embedded in various soil types. Structural Integrity and Life, 18(3), 171–179.
  27. Mandel J. (1936). Flambage au sein d’un milieu élastique, Annales des Ponts et Chaussées, 9, 295-335.
  28. Cummings, A E (1939). Flambement au sein d’un milieu élastique. Highway Research Board Proceedings, 18(2), 112–119.
  29. Bhattacharya S., Carrington T.M., & Aldridge T.R. (2005). Buckling considerations in pile design. Taylor & Francis Group.
  30. Bogumil, W., Wojciech, K. & Mikolaj, W. (2013). Nonlinear analysis of pile displacement using the finite element method. Technical Transactions Civil Engineering, 2(B), 138-141.
  31. ABAQUS (2013). Analysis user’s manual online documentation. Dassault Systèmes Simulia Corp, Providence.
  32. Helwany, S., (2007). Applied Soil Mechanics with ABAQUS Applications. John Wiley & Sons, Inc. ISBN: 978-0-471-79107-2.10.1002/9780470168097
  33. Xiao-guo Z., Ming-xin L. & Yun-gang Z. (2014)”Numerical Study for Buckling of Pile with Different Distributions of Lateral Subgrade Reaction”, EJGE, Bund. M, 19.
  34. Yun-gang, Z., Hong, W. & Fu-chen, L. (2012). Modeling Vertical Bearing Capacity of Pile Foundation by Using ABAQUS, Bund. L, 17, 1855-1865.
  35. Sang-woo, K., Yong-nam K. & Beom-soo K. (2012). Influence of Mesh Density and Element Type on the Accuracy of FE Analysis of Periodic Cellular Structures. Advanced Materials research, 445, 583-588.https://doi.org/[10.4028/www.scientific.net/AMR.445.583]
  36. Shashikant T. & Bindu R. S. (2015, May). Effect of Mesh Size on Finite Element Analysis of Plate Structure. International Journal of Engineering Science and Innovative Technology (IJESIT), 4(3).
  37. Picard M. (2012). Comportement et modelisation p-y des argiles sensibles du Québec : études expérimentale et paramétrique. Mémoire de maîtrise en génie civil, Université Laval, Québec, Canada.
  38. Seyed A. & Ehsan T. (2015). Numerical and theoretical study of plate load test to define coefficient of subgrade reaction. Journal of geotechnical and transportation engineering, 1(2).
  39. Kanakeswararao T. & Ganesh B. (2017, April). Analysis of Pile Foundation Subjected to Lateral and Vertical Loads. international journal of engineering trends and technology, 46(2).10.14445/22315381/IJETT-V46P219
  40. Jaehwan, L. & Sangseom, J. (2016). Experimental study of Estimating the Subgrade Reaction Modulus on Jointed Rock Foundation. Rock Mech Rock Eng, 2055-2064.https://doi.org/[10.1007/s00603-015-0905-9]
  41. Jamshid, S. & Maryam, A. (2009). Comparative Study of methods of Determination of coefficient of Subgrade Reaction. EJGE, Bund. E.
  42. Selvadurai. (1979). Elastic Analysis of Soil-Foundation Interaction. Elsevier Scientific Publication.
Language: English
Page range: 26 - 39
Published on: Feb 2, 2022
Published by: Technical University of Civil Engineering of Bucharest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Ahmed Halimi, Salim Kouloughli, published by Technical University of Civil Engineering of Bucharest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.