References
- Riede, T., Fitch, T. (1999). Vocal tract length and acoustics of vocalization in the domestic dog (Canis familiaris). J Exp Biol. 202(Pt 20): 2859-2867. https://doi.org/10.1242/jeb.202.20.2859 PMid:10504322
- Kim, M.J., Hunter, E.J., Titze, I.R. (2004). Comparison of human, canine, and ovine laryngeal dimensions. Ann Otol Rhinol Laryngol. 113(1): 60-68. https://doi.org/10.1177/000348940411300114 PMid:14763576
- Feddersen-Petersen, D.U. (2000). Vocalization of European wolves (Canis lupus lupus L.) and various dog breeds (Canis lupus f. fam.). Arch Anim Breed. 43(4): 387-398. https://doi.org/10.5194/aab-43-387-2000
- Pongracz, P., Miklosi, A., Molnar, Cs., Csanyi, V. (2005). Human listeners are able to classify dog barks recorded in different situations. J Comp Psychol. 119(2): 136-144. https://doi.org/10.1037/0735-7036.119.2.136 PMid:15982157
- Pongrácz, P., Molnár, C., Miklósi, Á. (2010). Barking in family dogs: an ethological approach. Vet J. 183(2): 141-147. https://doi.org/10.1016/j.tvjl.2008.12.010 PMid:19181546
- Pirrone, F., Pierantoni, L., Albizzati, V., Albertini, M. (2018). Different dynamics of sensory-motor development and behavior during the transitional period in puppies: preliminary results. Mac Vet Rev. 41(2): 153-161. https://doi.org/10.2478/macvetrev-2018-0018
- Yeon, S.C. (2007). The vocal communication of canines. J Vet Behav. 2(4): 141-144. https://doi.org/10.1016/j.jveb.2007.07.006
- Molnar, Cs., Kaplan, F., Roy, P., Pachet, F., Pongracz, P., Doka, A., Miklosi, A. (2008). Classification of dog barks: a machine learning approach. Anim Cogn. 11(3): 389-400. https://doi.org/10.1007/s10071-007-0129-9 PMid:18197442
- Molnar, C., Pongracz, P., Farago, T., Doka, A., Miklosi, A., (2009). Dogs discriminate between barks: the effect of context and identity of the caller. Behav Processes. 82(2): 198-201. https://doi.org/10.1016/j.beproc.2009.06.011 PMid:19596426
- Taylor, A.M., Ratcliffe, V.F., McComb, K., Reby, D. (2014). Auditory communication in domestic dogs: vocal signalling in the extended social environment of a companion animal. In: J. Kaminski, S. Marshall-Pescini (Eds.), The social dog, behavior and cognition (pp. 131-163). Amsterdam: Academic Press https://doi.org/10.1016/B978-0-12-407818-5.00005-X
- Bowling, D., Garcia, M., Garcia, M., Dunn, J.C., Dunn, J.C., Ruprecht, R., Stewart, A.D., et al. (2017). Body size and vocalization in primates and carnivores. Sci Rep. 7, 41070. https://doi.org/10.1038/srep41070 PMid:28117380 PMCid:PMC5259760
- Pongrácz, P., Molnár, C., Miklósi, Á. (2006). Acoustic parameters of dog barks carry emotional information for humans. Appl Anim Behav Sci. 100(3-4): 228-240. https://doi.org/10.1016/j.applanim.2005.12.004
- Farago, T., Pongracz, P., Miklosi, A., Huber, L., Viranyi, Z., Range, F. (2010). Dogs’ expectation about signalers’ body size by virtue of their growls. PLoS One 5(12): e15175. https://doi.org/10.1371/journal.pone.0015175 PMid:21179521 PMCid:PMC3002277
- Faragó, T., Takács, N., Miklósi, Á., Pongrácz, P. (2017). Dog growls express various contextual and affective content for human listeners. R Soc Open Sci. 4(5): 170134. https://doi.org/10.1098/rsos.170134 PMid:28573021 PMCid:PMC5451822
- Sibiryakova, O.V., Volodin, I.A., Volodina, E.V. (2020). Polyphony of domestic dog whines and vocal cues to body size. Curr Zool. 67(2): 165-176. https://doi.org/10.1093/cz/zoaa042 PMid:33854534 PMCid:PMC8026154
- Taylor, A.M., Reby, D., McComb, K. (2010). Why do large dogs sound more aggressive to human listeners: Acoustic bases of motivational misattributions. Ethol. 116(12): 1155-1162. https://doi.org/10.1111/j.1439-0310.2010.01829.x
- Bálint, A., Faragó, T., Dóka, A., Miklósi, Á., Pongrácz, P. (2013). ‘Beware, I am big and non-dangerous!’ - Playfully growling dogs are perceived larger than their actual size by their canine audience. Appl Anim Behav Sci. 148(1-2): 128-137. https://doi.org/10.1016/j.applanim.2013.07.013
- Zhang, Z. (2021). Contribution of laryngeal size to differences between male and female voice production. J Acoust Soc Am. 150(6): 4511-4521. https://doi.org/10.1121/10.0009033 PMid:34972311 PMCid:PMC8716178
- Walikar, B., Shamanna, K., Vandal, V.B. (2014). Acoustic analysis of voice in laryngeal pathology. JEBMH 1(7): 686-695. https://doi.org/10.18410/jebmh/2014/105
- Yin, S., McCowan, B. (2004). Barking in domestic dogs: context specificity and individual identification. Anim Behav. 68(2): 343-355. https://doi.org/10.1016/j.anbehav.2003.07.016
- Yin, S. (2002). A new perspective on barking in dogs (Canis familaris). J Comp Psychol. 116(2): 189-193. https://doi.org/10.1037//0735-7036.116.2.189 PMid:12083615
- Taylor, A.M., Reby, D. (2010). The contribution of source-filter theory to mammal vocal communication research. J Zool. 280(3): 221-236. https://doi.org/10.1111/j.1469-7998.2009.00661.x
- Bejdić, P., Ćutuk, A., Alić, A., Čengić, B., Avdić, R., Tandir, F., Mrvić, V. (2021). Comparative anatomical studies on ductus venosus in fetuses of domestic ruminants. Mac Vet Rev. 44(1): 29-36. https://doi.org/10.2478/macvetrev-2020-0034
- Hollien, H. (2014). Vocal fold dynamics for frequency change. J Voice. 28(4): 395-405. https://doi.org/10.1016/j.jvoice.2013.12.005 PMid:24726331
- Pfefferle, D., Fischer, J. (2006). Sounds and size: identification of acoustic variables that reflect body size in hamadryas baboons, Papio hamadryas. Animal Behaviour. 72(1): 43-51. https://doi.org/10.1016/j.anbehav.2005.08.021
- Dzierzęcka, M., Charuta, A. (2021). Morphometric description of the lar ynx in the dog (Canis familiaris). Acta Sci Pol Zootechn. 20(4): 43-50. https://doi.org/10.21005/asp.2021.20.4.06
- Condax, I., Nartey, J.N. (1978). The epiglottis in speech. JASA 64(S1): S91. https://doi.org/10.1121/1.2004453
- Garcia, M., Garcia, M., Herbst, C.T., Bowling, D.L., Dunn, J.C., Dunn, J.C., Fitch, W.T. (2017). Acoustic allometry revisited: morphological determinants of fundamental frequency in primate vocal production. Sci Rep. 7(1): 10450. https://doi.org/10.1038/s41598-017-11000-x PMid:28874852 PMCid:PMC5585385
- McCullagh, K.L., Shah, R.N., Huang, B.Y. (2022). Anatomy of the lar ynx and cer vical trachea. Neuroimaging Clin N Am. 32(4): 809-829. https://doi.org/10.1016/j.nic.2022.07.011 PMid:36244725
- Riede, T., Stein, A., Baab, K.L., Hoxworth, J.M. (2023). Post-pubertal developmental trajectories of laryngeal shape and size in humans. Sci Rep. 13(1): 7673. https://doi.org/10.1038/s41598-023-34347-w PMid:37169811 PMCid:PMC10175495
- Andaloro, C., Sharma, P., La Mantia, I. (2023). Anatomy, head and neck, larynx arytenoid cartilage. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing
- Zeng, Q., Jiao, Y., Huang, X., Wang, R., Bao, H., Lamb, J.R., Le, J., et al. (2019). Effects of angle of epiglottis on aerodynamic and acoustic parameters in excised canine larynges. J Voice. 33(5): 627-633. https://doi.org/10.1016/j.jvoice.2018.02.007 PMid:31543207
- Ey, E., Pfefferle, D., Fischer, J. (2007). Do age- and sex-related variations reliably reflect body size in non-human primate vocalizations? A review. Primates. 48(4): 253-267. https://doi.org/10.1007/s10329-006-0033-y PMid:17226064
- Kershenbaum, A., Blumstein, D.T., Roch, M.A., Akçay, Ç., Backus, G.A., Bee, M.A., Bohn, K.M., et al. (2016). Acoustic sequences in non‐human animals: a tutorial review and prospectus. Biol Rev Camb Philos Soc. 91(1): 13-52. https://doi.org/10.1111/brv.12160 PMid:25428267 PMCid:PMC4444413
- Rameau, A., Andreadis, K., Ganesan, V., Lachs, M.S., Rosen, T., Wang, F., Maddox, A., et al. (2023). Acoustic screening of the “Wet voice”: proof of concept in an ex vivo canine laryngeal model. Laryngosc. 133(10): 2517-2524. https://doi.org/10.1002/lary.30525 PMid:36533566 PMCid:PMC10277308