References
- Minić, R., Živković, I. (2020). Optimization, validation and standardization of ELISA. In: Mozsik, G. (Ed.) Norovirus. Chapter 2, London: Intech Open Limited https://doi.org/10.5772/intechopen.94338
- Casaubon, J., Chaignat, V., Vogt, H.R., Michel, A., Thür, B., Ryser-Degiorgis, M.P. (2013). Survey of bluetongue virus infection in free-ranging wild ruminants in Switzerland. BMC Vet Res. 9, 166. https://doi.org/10.1186/1746-6148-9-166 PMid:23941229 PMCid:PMC3765105
- Padalko, E., Colenbie, L., Delforge, A., Ectors, N., Imbert, R., Jansens, H., Pirnay, J.P., et al. (2023). Preanalytical variables influencing the interpretation and reporting of biological tests on blood samples of living and deceased donors for human body materials. JCTR 25(2): 509-520. https://doi.org/10.1007/s10561-023-10106-z PMid:37624485 PMCid:PMC11143040
- Didkowska, A., Krajewska-Wedzina, M., Klich, D., Prolejko, K., Orlowska, B., Anusz, K. (2021). The risk of false-positive serological results for paratuberculosis in Mycobacterium bovis-infected cattle. Pathogens 10(8): 1054. https://doi.org/10.3390/pathogens10081054 PMid:34451518 PMCid:PMC8399313
- Lelisa, K., Chibssa, T.R., Desissa, F., Emiyu, K. (2022). Evaluation of diagnostic performance of H-based blocking ELISA for specific detection of peste des petits ruminants in domestic sheep, goats, cattle and camels. BMC Microbiol. 22(1): 254. https://doi.org/10.1186/s12866-022-02669-w PMid:36266634 PMCid:PMC9585824
- Ma, H., O‘Fagain, C., O‘Kennedy, R. (2020). Antibody stability: a key to performance - analysis, influences and improvement. Biochimie 177, 213-225. https://doi.org/10.1016/j.biochi.2020.08.019 PMid:32891698
- Knight-Jones, T.J.D., Bulut, A.N., Gubbins, S., Stärk, K.D.C., Pfeiffer, D.U., Paton, D.J. (2014). Retrospective evaluation of foot-and-mouth disease vaccine effectiveness in Turkey. Vaccine 32(16): 1848-1855. https://doi.org/10.1016/j.vaccine.2014.01.071 PMid:24530150 PMCid:PMC3991324
- Garnier, R., Ramos, R., Sanz-Aguilar, A., Maud Poisbleau, M., Weimerskirch, H., Burthe, S., Tornos, J., Boulinier, T. (2016). Interpreting ELISA analyses from wild animal samples: some recurrent issues and solutions. Funct Ecol. 31(12): 2255-2262. https://doi.org/10.1111/1365-2435.12942
- Boadella, M., Gortázar, C. (2011). Effect of haemolysis and repeated freeze-thawing cycles on wild boar serum antibody testing by ELISA. BMC Res Notes. 4, 498. https://doi.org/10.1186/1756-0500-4-498 PMid:22087883 PMCid:PMC3226466
- Van Stralen, K.J., Stel, V.S, Reitsma, J.B., Dekker, F.W., Zoccali, C., Jager, K.J. (2009). Diagnostic methods: sensitivity, specificity, and other measures of accuracy. Kidney Int. 75(12): 1257-1263. https://doi.org/10.1038/ki.2009.92 PMid:19340091
- Epitools - Epidemiological Calculators: https://epitools.ausvet.com.au/
- WOAH [Internet]. Terrestrial Manual. (Updated 29/11/2024) Chapter 3.1.8. „Foot And Mouth Disease“ adopted version in May 2022. https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.01.08_FMD.pdf
- Xiumei, H., Zhang, R., Taixue, A., Qiang, L., Situ, B., Zihao, O., Changmeng, W. et al. (2020). Impact of heat-inactivation on the etection of SARS-CoV-2 IgM and IgG antibody by ELISA. Clin Chim Acta. 509, 288-292. https://doi.org/10.1016/j.cca.2020.06.032 PMid:32569631 PMCid:PMC7305743
- Michaut, L., Laurent, N., Kentsch, K., Spindeldreher, S., Deckert-Salva, F. (2014). Stability of anti-immunotherapeutic antibodies in frozen human serum samples. Bioanalysis 6(10): 1395-1407. https://doi.org/10.4155/bio.14.97 PMid:24958123
- Pinsky, N., Huddleston, J., Jacobson, R., Wollan, P., Poland, G. (2003). Effect of multiple freeze-thaw cycles on detection of measles, mumps, and rubella virus antibodies. Clin Diagn Lab Immunol. 10(1): 19-21. https://doi.org/10.1128/CDLI.10.1.19-21.2003 PMid:12522034 PMCid:PMC145292
- Shurrab, F., Al-Sadeq, D., Amanullah, F., Younes, S., Al-Jighefee, H., Younes, N., Dargham, S. et al. (2021). Effect of multiple freeze-thaw cycles on the detection of anti-SARS-CoV-2 IgG antibodies, J Med Microbiol. 70(8): 70:001402. https://doi.org/10.1099/jmm.0.001402 PMid:34356000 PMCid:PMC8513627
- Cuhadar, S., Koseoglu, M., Atay, A., Dirican, A. (2013). The effect of storage time and freeze-thaw cycles on the stability of serum samples. Biochem Med. 23(1): 70-78. https://doi.org/10.11613/BM.2013.009 PMid:23457767 PMCid:PMC3900085
- Torelli, A., Gianchecchi, E., Monti, M., Piu, P., Barneschi, I., Bonifazi, C., Coluccio, R. et al. (2021). Effect of repeated freeze-thaw cycles on influenza virus antibodies. Vaccines 9(3): 267. https://doi.org/10.3390/vaccines9030267 PMid:33802846 PMCid:PMC8002830
- Cliquet, F., Sagne, L., Schereffer, L., Aubert, M.F. (2000). ELISA test for rabies antibody titration in orally vaccinated foxes sampled in the fields. Vaccine 18(28): 3272-3279. https://doi.org/10.1016/S0264-410X(00)00127-4 PMid:10869772
- Johnson, M. (2012). Antibody storage and antibody shelf life. Mater Methods. 2, 120. https://doi.org/10.13070/mm.en.2.120
- Huang, Z., Zhu, H., Xiao, L., Liu, T., Gan, H., Lin, R., Luo, W., Sun, B. (2023). Allergy patient-specific IgE antibody shows significantly stability during 3 months of storage at multiple temperatures from −80 to 25°C. Front Allergy. Sec Allergens. 4 - 2023. https://doi.org/10.3389/falgy.2023.1239924 PMid:37744695 PMCid:PMC10513756
- Østergaard, M., Sandfeld-Paulsen, B. (2023). Preanalytical temperature and storage stability of specific IgE antibodies in serum. Scan J Clin Lab. 83(3): 160-165. https://doi.org/10.1080/00365513.2023.2188606 PMid:36988143
- Cray, C., Rodriguez, M., Zaias, J., Altman, N.H. (2009). Effects of storage temperature and time on clinical iochemical parameters from rat serum. JAALAS 48(2): 202-204.
- Castro, A.R., Jost, H.A. (2013). Effect of multiple freeze and thaw cycles on the sensitivity of IgG and IgM immunoglobulins in the sera of patients with syphilis. Sex Transm Dis. 40(11): 870-871. https://doi.org/10.1097/OLQ.0000000000000036 PMid:24113410