Have a personal or library account? Click to login
The Effect of Beetroot Extract with Silver Nano Particles on Rumen Parameters in Awassi Lambs Cover

The Effect of Beetroot Extract with Silver Nano Particles on Rumen Parameters in Awassi Lambs

Open Access
|Mar 2025

References

  1. Gledhill, D. (2008). The names of plants. (p. 70). New York: Cambridge University Press https://doi.org/10.1017/CBO9780511550898
  2. Pin, P.A., Zhang, W., Vogt, S.H., et al. (2012). The role of a pseudo-response regulator gene in life cycle adaptation and domestication of Beet. Curr Biol. 22(12): 1095-1101. https://doi.org/10.1016/j.cub.2012.04.007 PMid:22608508
  3. Sarfaraz, S., Ikram, R., Osama M., Anser, H. (2020). Effect of different doses of lyophilized beetroot on fertility and reproductive hormones. Pak J Pharm Sci. 33(6): 2505-2510.
  4. Waghorn, G.C., Collier, K. Bryant, M., Dalley, D.E. (2018). Feeding fodder beet (Beta vulgaris L.) with either barley straw or pasture silage to non-lactating dairy cows. N Z Vet J. 66(4): 178-185. https://doi.org/10.1080/00480169.2018.1465484 PMid:29669474
  5. Mohammed, M.D., Elamin, K.M., Amin, A.E., Hassan, H.E., Khalid, A.F. (2012). Effects of feeding Beta vulgaris saccharifera bulb for fattening desert lambs under tropical conditions of Sudan. Vet World. 5(6): 330-334. https://doi.org/10.5455/vetworld.2012.330-334
  6. Dalley, D., Waugh, D., Griffin, A., Higham, C., de Ruiter, J., Malcolm, B. (2020). Productivity and environmental implications of fodder beet and maize silage as supplements to pasture for late lactation dairy cows. N Z J Agric Res. 63(1): 145-164. https://doi.org/10.1080/00288233.2019.1675717
  7. Saldias, B., Gibbs, S.J. (2016). Brief communication: ad libitum fodder-beet and pasture beef-finishing systems: Intake, utilization, grazing behaviour and liveweight gains. Proceedings of the N Z Soc Anim Prod. 76, 87-89.
  8. Zebeli, Q., Metzler-Zebeli, B.U. (2012). Interplay between rumen digestive disorders and diet-induced inflammation in dair y cattle. Res Vet Sci. 93(3): 1099-1108. https://doi.org/10.1016/j.rvsc.2012.02.004 PMid:22370295
  9. Waghorn, G.C., Law, N., Bryant, M., Pacheco, D., Dalley, D. (2018). Digestion and nitrogen excretion by Holstein-Friesian cows in late lactation offered ryegrass-based pasture supplemented with fodder beet. Anim Prod Sci. 59(7): 1261-1270. https://doi.org/10.1071/AN18018
  10. Pacheco, D., Muetzel, S., Lewis, S., Dalley, D., Bryant, M., Waghorn G.C. (2020). Rumen digesta and products of fermentation in cows fed varying proportions of fodder beet (Beta vulgaris) with fresh pasture or silage or straw. Anim Prod Sci. 60(4): 524-534. https://doi.org/10.1071/AN18002
  11. De Silva, C., Nawawi, N.M., Abd Karim, M.M., Abd Gani, S., Masarudin, M.J., Gunasekaran, B., Ahmad, S.A. (2021). The mechanistic action of biosynthesised silver nanopar ticles and its application in aquaculture and livestock industries. Animals (Basel) 11(7): 2097. https://doi.org/10.3390/ani11072097 PMid:34359224 PMCid:PMC8300251
  12. Goetsch, A.L. (1999). Growing and f inishing performance by lambs differing in growth potential consuming diets during growing varying in levels of corn and rumen undegradable protein. Small Rumin Res. 31(3): 245-257. https://doi.org/10.1016/S0921-4488(98)00137-0
  13. Dawood, T.N. (2014). The effect of Ocimum basilicum and Cuminum cyminum seeds on the weight gain and rumen activity and fermentation in Awassi rams. Iraqi J Vet Med. 38(2): 108-113. https://doi.org/10.30539/iraqijvm.v38i2.231
  14. Wiley, R.C., Lee, Y.N. (1987). Recovery of betalaines from red beets by a diffusion-extraction procedure. J Food Sci. 43, 1056-1058. https://doi.org/10.1111/j.1365-2621.1978.tb15231.x
  15. Smith, J., Lee, R., Khan, A. (2020). Synthesis of silver nanoparticles from beetroot extract using soxhlet extraction method. J Nanotechnol Res. 12(4): 135-142.
  16. Mehdizadeh, S., Ghasemi, N., Ramezani, M. (2019). The synthesis of silver nanoparticles using beetroot extract and its antibacterial and catalytic activity. Eurasian Chem Commun. 1(6): 545-558. https://doi.org/10.33945/SAMI/ECC.2019.6.5
  17. AOAC (Association of Official Analytical Chemists). (2005). Official of analysis, 18th ed. Gaithersburg, Maryland, USA: AOAC Inter
  18. Weichselbaun, T.E., Hagerty, J.C., Mark Jr., H.B. (1969). A reaction rate method for ammonia and blood urea nitrogene utilizing a pentacynonitrsylferrate catalyzed berthelot reaction. Anal Chem. 41(6): 848-850. https://doi.org/10.1021/ac60275a046 PMid:5788025
  19. Atlas, R.M., Brown, A.E., Parks, L.C. (1995). Laboratory manual of experimental microbiology. USA: Mosby-Year Book Inc.
  20. Huws, S.A., Kim, E.J., Kingston-Smith, A.H., Lee, M.R., Muetzel, S.M., Cookson, A.R., et al. (2009). Rumen protozoa are rich in polyunsaturated fatty acids due to the ingestion of chloroplasts. FEMS Microbiol Ecol. 69(3): 461-471. https://doi.org/10.1111/j.1574-6941.2009.00717.x PMid:19583786
  21. Martin, C., Williams, A.G., Michalet-Doreau, B. (1994). Isolation and characteristics of the protozoal and bacterial fractions from bovine r uminal contents. J Anim Sci. 72(11): 2962-2968. https://doi.org/10.2527/1994.72112962x PMid:7730192
  22. Tymensen, L., Barkley, C., McAllister, T.A. (2012). Relative diversity and community structure analysis of rumen protozoa according to T-RFLP and microscopic methods. J Microbiol Methods. 88(1): 1-6. https://doi.org/10.1016/j.mimet.2011.09.005 PMid:22033497
  23. Daniel, W. (2009). Biostatistics: a foundation for analysis in the health sciences. 9th ed. USA: John Wiley and Sons Inc.
  24. Guo, Y., Xu, X., Zou, Y., Yang, Z., Li, S., Cao, Z. (2013). Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp. J Anim Sci Biotechnol. 4(1): 31. https://doi.org/10.1186/2049-1891-4-31 PMid:23947764 PMCid:PMC3765726
  25. Fleming, A.E., Garrett, K., Froehlich, K., Beck, M.R., Mangwe, M.C., Bryant, R.H., Edwards, G., Gregorini, P. (2021). Rumen function and grazing behavior of early-lactation dairy cows supplemented with fodder beet. J Dairy Sci. 104(7): 7696-7710. https://doi.org/10.3168/jds.2020-19324 PMid:33865586
  26. Veterinary Clinics of North America (VCNA). (1989). Food animal practice. 5(2): 237-249. https://doi.org/10.1016/S0749-0720(15)30974-9 PMid:2667705
  27. Dawood, T.N., Kareem, E.H. (2020). Effect of nanomaterial on animal and human health: A review. Plant Arch. 20(Suppl. 1): 2530-2536.
  28. El-Khodery, S., El-Boshy, M., Gaafar, K., Elmashad, A. (2008). Hypocalcaemia in Ossimi sheep associated with feeding on Beet Tops (Beta vulgaris). Turk J Vet Anim Sci. 32(3): 199-205.
  29. Dickie, C.W., Hamann, M.H., Carroll, W.D., Chow, F.H. (1978). Oxalate (Rumex venosus) poisoning in cattle. J Am Vet Med Assoc. 173(1): 73-74.
  30. Williams, C.L., Thomas, B.J., McEwan, N.R., Stevens, P.R., Creevey, C.J., Huws, S.A. (2020). Rumen protozoa play a significant role in fungal predation and plant carbohydrate breakdown. Front Microbiol. 11, 720. https://doi.org/10.3389/fmicb.2020.00720 PMid:32411103 PMCid:PMC7200989
  31. Carlson, S.A., Sharma, V.K., McCuddin, Z.P., Rasmussen, M.A., Franklin, S.K. (2007). Involvement of a Salmonella genomic island 1 gene in the rumen protozoan-mediated enhancement of invasion for multiple-antibiotic-resistant Salmonella enterica serovar Typhimurium. Infect Immun. 75(2): 792-800. https://doi.org/10.1128/IAI.00679-06 PMid:17145942 PMCid:PMC1828496
  32. Stanford, K., Bach, S.J., Stephens, T.P., Mcallister, T.A. (2010). Effect of rumen protozoa on Escherichia coli O157:H7 in the rumen and feces of specifically faunated sheep. J Food Prot. 73(12): 2197-2202. https://doi.org/10.4315/0362-028X-73.12.2197 PMid:21219736
  33. Rai, M., Yadav, A., Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 27(1): 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002 PMid:18854209
  34. Prasad, R., Pandey, R., Babu, K.D., Yadav, V., Saha, S., (2017). Silver nanoparticles as antimicrobial agents: a case study on E. coli as a model for gram-negative bacteria. Curr Nanosci. 13(4): 391-403.
  35. Sarkar, S., Jana, A.D., Samanta, S.K., Mostafa, G., (2007). Selective toxicity of gold nanoparticles for bacteria over fungi mediated by particle dose. Nanotechnol. 18(38): 385102. https://doi.org/10.1088/0957-4484/18/38/385102
  36. Huws, S.A., Kim, E.J., Lee, M.R., Scott, M.B. (2018). Rumen microbiome adaptation in response to nano-structured materials. Front Microbiol. 9, 185.
  37. Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D., Alvarez, P.J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42(18): 4591-4602. https://doi.org/10.1016/j.watres.2008.08.015 PMid:18804836
  38. Plaizier, J.C., Krause, D.O., Gozho, G.N., McBride, B.W. (2008). Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet J. 176(1): 21-31. https://doi.org/10.1016/j.tvjl.2007.12.016 PMid:18329918
  39. Mertens, D.R. (1997). Creating a system for meeting the fiber requirements of dairy cows. J Dairy Sci. 80(7): 1463-1481. https://doi.org/10.3168/jds.S0022-0302(97)76075-2 PMid:9241608
  40. Fleming, A., Garrett, K., Froehlich, K., Beck, M., Bryant, R.H., Edwards, G., Gregorini, P. (2020). Supplementation of spring pasture with harvested fodder beet bulb alters rumen fermentation and increases risk of subacute ruminal acidosis during early lactation. Animals (Basel) 10(8): 1307. https://doi.org/10.3390/ani10081307 PMid:32751524 PMCid:PMC7460450
Language: English
Page range: 77 - 85
Submitted on: Jun 16, 2024
|
Accepted on: Nov 27, 2024
|
Published on: Mar 4, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Tamara Natiq Dawood, published by Ss. Cyril and Methodius University in Skopje
This work is licensed under the Creative Commons Attribution 4.0 License.