References
- Valskys, V., Hassan, H.R., Wołkowicz, S., Satkūnas, J., Kibirkštis, G., Ignatavičius, G. (2022). A review on detection techniques, health hazards and human health risk assessment of arsenic pollution in soil and groundwater. Minerals 12(10): 1326. https://doi.org/10.3390/min12101326
- Paswan, S., Niyogi, D., Choudhary, P.K., Raghubanshi, D. (2018). Ameliorating effect of ascorbic acid on clinicopathological changes of induced sub-acute arsenic toxicity in broiler birds. Int J Curr Microbiol App Sci. Special Issue 7, 5084-5094.
- Ahmad, S., Kitchin, K.T., Cullen, W.R. (2000). Arsenic species that cause release of iron from ferritin and generation of activated oxygen. Arch Biochem Biophys. 382(2): 195-202. https://doi.org/10.1006/abbi.2000.2023 PMid:11068869
- Ford, M. (2002). Arsenic. In: L.R. Goldfrank, N. Flomnbaum, N. Lewin, M.A. Howland, R. Hoffman, L. Nelson (Eds.), Goldfrank’s Toxicological Emergencies, 7th Ed. (pp. 1183-1195). New York, USA: McGraw-Hill
- Craddock, H.A., Huang, D., Turner, P.C., Quirós-Alcalá, L., Payne-Sturges, D.C. (2019). Trends in neonicotinoid pesticide residues in food and water in the United States, 1999-2015. Environ Health 18, 7. https://doi.org/10.1186/s12940-018-0441-7 PMid:30634980 PMCid:PMC6330495
- Thompson, D.A., Lehmler, H.J., Kolpin, D.W., Hladik, M.L., Vargo, J.D., Schilling, K.E., Le-Fevre, G.H., et al. (2020). A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. Environ Sci Processes Impacts. 22, 1315-1346. https://doi.org/10.1039/C9EM00586B PMid:32267911
- Lv, Y., Bing, Q., Lv, Z., Xue, J., Li, S., Han, B., Yang, Q., et al. (2020). Imidacloprid-induced liver fibrosis in quails via activation of the TGF-β1/Smad pathway. Sci Total Environ. 705, 135915. https://doi.org/10.1016/j.scitotenv.2019.135915 PMid:31835194
- Wang, X., Anadón, A., Wu, Q., Qiao, F., Ares, I., Martínez-Larrañaga, M.R., Yuan, Z., Martínez, M.A. (2018). Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism. Ann Rev Pharmacol Toxicol. 58, 471-507. https://doi.org/10.1146/annurev-pharmtox-010617-052429 PMid:28968193
- Ravikanth, V., Lakshman, M., Madhuri, D., Kalakumar, B. (2018). Effect of spinosad and imidacloprid on ser um biochemical alterations in male broilers and its amelioration with vitamin E and silymarin. Int J Curr Microbiol App Sci. 7(4): 2186-2192. https://doi.org/10.20546/ijcmas.2018.704.248
- Mahajan, L., Verma, P.K., Raina, R., Sood, S. (2018). Toxic effects of imidacloprid combined with arsenic: oxidative stress in rat liver. Toxicol Ind Health. 34(10): 726-735. https://doi.org/10.1177/0748233718778993 PMid:30033815
- Vega-Bautista, A., de la Garza, M., Carrero, J.C., Campos-Rodríguez, R., Godínez-Victoria, M., Drago-Serrano, M.E. (2019). The impact of lactoferrin on the growth of intestinal inhabitant bacteria. Int J Mol Sci. 20(19): 4707. https://doi.org/10.3390/ijms20194707 PMid:31547574 PMCid:PMC6801499
- Olyayee, M., Javanmard, A., Janmohammadi, H., Kianfar, R., Alijani, S., Ghelenj, S.A.M. (2023). Supplementation of broiler chicken diets with bovine lactoferrin improves growth performance, histological parameters of jejunum and immune-related gene expression. J Anim Physiol Anim Nutr. 107(1): 200-213. https://doi.org/10.1111/jpn.13683 PMid:35102621
- Kell, D.B., Heyden, E.L., Pretorius, E. (2020). The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Front Immunol. 11, 1221. https://doi.org/10.3389/fimmu.2020.01221 PMid:32574271 PMCid:PMC7271924
- Legrand, D., Elass, E., Carpentier, M., Mazurier, M. (2005). Lactoferrin: a modulator of immune and inflammatory responses. Cell Mol Life Sci. 62, 2549. https://doi.org/10.1007/s00018-005-5370-2 PMid:16261255 PMCid:PMC7079806
- Abd El Monsef, A.G., El Zohairy, N.F., Hassan, M.F., Salem, S.M., Gouda, A.A., Mansour, M.K., Alkhaldi, A.A.M., et al. (2024). Effects of prebiotic (lactoferrin) and diclazuril on broiler chickens experimentally infected with Eimeria tenella. Front Vet Sci. 11, 1416459. https://doi.org/10.3389/fvets.2024.1416459 PMid:39036795 PMCid:PMC11258017
- Inns, R.H., Bright, J.E., Marrs, T.C. (1988). Comparative acute systemic toxicity of sodium arsenite and dichloro (2~hlorovinyl) arsine in rabbits. Toxicology 51(2-3): 213-222. https://doi.org/10.1016/0300-483X(88)90151-5 PMid:3176029
- Kammon, A.M., Brar, R.S., Banga, H.S., Sodhi, S. (2012). Ameliorating effects of vitamin E and selenium on immunological alterations induced by imidacloprid chronic toxicity in chickens. J Environ Anal Toxicol. S4. https://doi.org/10.4172/2161-0525.S4-007
- Enany, M.E., Algammal, A.M., Solimane, R.T., El-Sissi, A.F., Hebashy, A.A. (2017). Evaluation of lactoferrin immunomodulatory effect on the immune response of broiler chickens. SCVMJ 22(1): 135-146. https://doi.org/10.21608/scvmj.2017.62452
- Uluozlu, O.D., Tuzen, M., Mendil, D., Soylak, M. (2009). Assessment of trace element contents of chicken products from turkey. J Hazard Mater. 163(2-3): 982-987. https://doi.org/10.1016/j.jhazmat.2008.07.050 PMid:18752893
- Dewangan, G., Patra, P.H., Mishra, A., Singh, A.K., Dutta, B.K., Sar, T.K., Chakraborty, A.K., Mandal, T.K. (2012). Haemobiochemical, immunological, antioxidant status and residues of flumethrin following weekly dermal application in goats. Toxicol Environ Chem. 94(2): 377-387. https://doi.org/10.1080/02772248.2011.641968
- Suvarna, K.S., Layton, C., Bancroft, J.D. (2018). Bancroft’s theory and practice of histological techniques, 8th Ed. Netherlands: E-Book, Elsevier Health Sciences
- Feldman, B.F., Zinkl, J.G., Jain, N.C. (2000). Schalm’s veterinary hematology. 5th Ed. Canada: Lippincott Williams and Wilkins
- Anderson, C.B., Latimer, R.S. (1990). Cyto-chemical staining characteristics of chickens heterophils and eosinophils. Vet Clin Pathol. 19(2): 51-54. https://doi.org/10.1111/j.1939-165X.1990.tb00543.x PMid:12684938
- Davis, B. (1964). Disk electrophoresis - II Method and application to human serum protein. Ann N Y Acad Sci. 121(2): 404-427. https://doi.org/10.1111/j.1749-6632.1964.tb14213.x PMid:14240539
- Pang, S., Han, B., Wu, P., Yang, X., Liu, Y., Li, J., Lv, Z., Zhang, Z. (2024). Resveratrol alleviates inorganic arsenic-induced ferroptosis in chicken brain via activation of the Nrf2 signaling pathway. Pestic Biochem Physiol. 201, 105885. https://doi.org/10.1016/j.pestbp.2024.105885 PMid:38685251
- Eleiwa, N.Z., El-Shabrawi, A.A., Ibrahim, D., Abdelwarith, A.A., Younis, E.M., Davies, S.J., Metwally, M.M.M., Abu-Zeid, E.H. (2023). Dietary curcumin modulating effect on perfor mance, antioxidant status, and immune-related response of broiler chickens exposed to imidacloprid insecticide. Animals 13(23): 3650. https://doi.org/10.3390/ani13233650 PMid:38067001 PMCid:PMC10705146
- Kawakami, H., Hiratsuka, M., Dosako, S. (1988). Effects of iron-saturated lactoferrin on iron absorption. Agric Biol Chem. 52(4): 903-908. https://doi.org/10.1080/00021369.1988.10868784
- Duker, A., Carranza, E., Hale, M. (2005) Arsenic geochemistry and health. Environ Int. 31(5): 631-641. https://doi.org/10.1016/j.envint.2004.10.020 PMid:15910959
- Khandia, R., Pathe, C.S., Vishwakarma, P., Dhama, K., Munjal, A. (2020). Evaluation of the ameliorative effects of Phyllanthus niruri on the deleterious insecticide imidacloprid in the vital organs of chicken embryos. J Ayurveda Integ Med. 11(4): 495-501. https://doi.org/10.1016/j.jaim.2019.03.003 PMid:31757597 PMCid:PMC7772494
- Conte, F.M., Cestonaro, L.V., Piton, Y.V., Guimaraes, N., Garcia, S.C., da Silva, D., Arbo, M.D. (2022). Toxicity of pesticides widely applied on soybean cultivation: synergistic effects of fipronil, glyphosate and imidacloprid in HepG2 cells. Toxicol In Vitro 84, 105446. https://doi.org/10.1016/j.tiv.2022.105446 PMid:35850439
- Abdel-Hameid, N.A.H. (2009). A protective effect of calcium carbonate against arsenic toxicity of the Nile catfish (Clarias gariepinus). Turk J Fish Aquat Sci. 9(2): 191-200.
- Arfat, Y., Mahmood, N., Tahir, M.U., Rashid, M., Anjum, S., Zhao, F., Li, D.J., et al. (2014). Effect of imidacloprid on hepatotoxicity and nephrotoxicity in male albino mice. Toxicol Rep. 1, 554-561. https://doi.org/10.1016/j.toxrep.2014.08.004 PMid:28962268 PMCid:PMC5598541
- Eid, Y.Z., Omara, Y., Ragab, A., Ismail, A., Zommara, M., Dawood, M.A.O. (2023). Mitigation of Imidacloprid Toxicity in Poultry Chicken by Selenium Nanoparticles, Growth Performance, Lipid Peroxidation, and Blood Traits. Biol Trace Elem Res. 201, 5379-5388. https://doi.org/10.1007/s12011-023-03592-5 PMid:36790585 PMCid:PMC10509070
- Li, J., Guo, C., Liu, Y., Han, B., Lv, Z., Jiang, H., Li, S., Zhang, Z. (2024). Chronic arsenic exposure-provoked biotoxicity involved in liver-microbiotagut axis disruption in chickens based on multi-omics technologies. J Adv Res. S2090-1232(24)00032-8. https://doi.org/10.1016/j.jare.2024.01.019
- Wang, Y.H., Wang, Y.Q., Yu, X.G., Lin, Y., Liu, J.X., Wang, W.Y., Yan, C.H. (2023). Chronic environmental inorganic arsenic exposure causes social behavioral changes in juvenile zebra fish (Danio rerio). Sci Total Environ. 867, 161296. https://doi.org/10.1016/j.scitotenv.2022.161296 PMid:36592900
- Aggarwal, M., Naraharisetti, S.B., Sarkar, S.N., Rao, G.S., Degen, G.H., Malik, J.K. (2009). Effects of subchronic coexposure to arsenic and endosulfan on the erythrocytes of broiler chickens: a biochemical study. Arch Environ Contam Toxicol. 56(1): 139-148. https://doi.org/10.1007/s00244-008-9171-0 PMid:18443843
- Johnson, W.M., Wilson-Delfosse, A.L., Mieyal, J.J. (2012). Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4(10): 1399-1440. https://doi.org/10.3390/nu4101399 PMid:23201762 PMCid:PMC3497002
- Sattar, A., Khan, A., Hussain, H.I., He, C., Hussain, R., Zhiqiang, S., Saleemi, M.K., Gul, S.T. (2016). Immunosuppressive effects of arsenic in broiler chicks exposed to Newcastle disease virus. J Immunotoxicol. 13(6): 861-869. https://doi.org/10.1080/1547691X.2016.1217105 PMid:27687888
- Roy, C.L., Jankowski, M.D., Ponder, J., Chen, D. (2020). Sublethal and lethal methods to detect recent imidacloprid exposure in birds with application to field studies. Environ Toxicol Chem. 39(7): 1355-1366. https://doi.org/10.1002/etc.4721 PMid:32274821 PMCid:PMC8164728
- Ahmed, S., Siddiqui, M.S.I., Islam, K., Islam, M.N., Gani, M.U., Moonmoon, S., Rashid, M.H., Awal, M.A. (2016). Arsenic deposition in different organs or tissues in an experimental toxicosis of White New-Zealand Rabbit. Asian J Med Biol Res. 2(3): 422-428. https://doi.org/10.3329/ajmbr.v2i3.30113