References
- Patel, B.A., Bian, X., Quaiserova-Mocko, V., Galligan, J.J., Swain, G.M. (2007). In vitro continuous amperometric monitoring of 5-hydroxytryptamine release from enterochromaffin cells of the guinea pig ileum. Analyst 132, 41-47. https://doi.org/10.1039/B611920D PMid:17180178
- Gershon, M.D. (2005). Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol. 39(5 Suppl. 3): S184-193. https://doi.org/10.1097/01.mcg.0000156403.37240.30 PMid:15798484
- Hoffman, J.M., Tyler, K., MacEachern, S.J., Balemba, O.B., Johnson, A.C., Brooks, E.M., Zhao, H., et al. (2012). Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 142(4): 844-854.e4. https://doi.org/10.1053/j.gastro.2011.12.041 PMid:22226658 PMCid:PMC3477545
- Côté, F., Thévenot, E., Fligny, C., Fromes, Y., Darmon, M., Ripoche, M.A., Bayard, E., et al. (2003). Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc Natl Acad Sci U S A. 100(23): 13525-13530. https://doi.org/10.1073/pnas.2233056100 PMid:14597720 PMCid:PMC263847
- Betari, N., Sahlholm, K., Ishizuka, Y., Teigen, K., Haavik, J. (2020). Discovery and biological characterization of a novel scaffold for potent inhibitors of peripheral serotonin synthesis. Future Med Chem. 12(16): 1461-1474. https://doi.org/10.4155/fmc-2020-0127 PMid:32752885
- Walther, D.J., Bader, M. (2003). A unique central tryptophan hydroxylase isofor m. Biochem Pharmacol. 66(9): 1673-1680. https://doi.org/10.1016/S0006-2952(03)00556-2 PMid:14563478
- Raybould, H.E. (2010). Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci. 153(1-2): 41-46. https://doi.org/10.1016/j.autneu.2009.07.007 PMid:19674941 PMCid:PMC3014315
- Gershon, M.D. (1999). Roles played by 5-hydroxytryptamine in the physiology of the bowel. Aliment Pharmacol Ther. 13, (Suppl 2): 15-30. https://doi.org/10.1046/j.1365-2036.1999.00002.x-i2
- Hatami-Monazah, H., Abdallah, O. (1978). Study on the morphology of the gall-bladder of the goat. Acta Anat (Basel). 100(2): 203-209. https://doi.org/10.1159/000144900 PMid:619497
- Sand, J., Tainio, H., Nordback, I. (1993). Neuropeptides in pig sphincter of Oddi, bile duct, gallbladder, and duodenum. Dig Dis Sci. 38(4): 694-700. https://doi.org/10.1007/BF01316802 PMid:8462369
- Gulubova, M.V., Valkova, I.V., Ivanova, K.V., Ganeva, I.G., Prangova, D.K., Ignatova, M.M.K., Vasilev, S.R., Stefanov, I.S. (2017). Endocrine cells in pig’s gallbladder, ductus cysticus and ductus choledochus with special reference to ghrelin. Bulg Chem Commun. Special Issue E. 184-190.
- Zuccarello, B., Spada, A., Turiaco, N., Villari, D., Parisi, S., Francica, I., Fazzari, C., et al. (2009). Intramural ganglion str uctures in esophageal atresia: a morphologic and immunohistochemical study. Int Jo Pediatr. 2009:695837. https://doi.org/10.1155/2009/695837 PMid:20041008 PMCid:PMC2778171
- Costa, M., Brookes, S.J., Steele, P.A., Gibbins, I., Burcher, E., Kandiah, C.J. (1996). Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 75(3): 949-967. https://doi.org/10.1016/0306-4522(96)00275-8 PMid:8951887
- Costa, M., Furness, J.B., Cuello, A.C., Verhofstad, A.A., Steinbusch, H.W., Elde, R.P. (1982). Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: their visualization and reactions to drug treatment. Neuroscience 7(2): 351-363. https://doi.org/10.1016/0306-4522(82)90272-X PMid:6210850
- Young, H.M., Furness, J.B. (1995). Ultrastructural examination of the targets of serotonin-immunoreactive descending interneurons in the guinea pig small intestine. J Comp Neurol. 356(1): 101-114. https://doi.org/10.1002/cne.903560107 PMid:7629305
- Galligan, J.J., LePard, K.J., Schneider, D.A., Zhou, X. (2000). Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J Auton Nerv Syst. 81(1-3): 97-103. https://doi.org/10.1016/S0165-1838(00)00130-2 PMid:10869707
- Monro, R.L., Bertrand, P.P., Bornstein, J.C. (2002). ATP and 5-HT are the principal neurotransmitters in the descending excitatory reflex pathway of the guinea-pig ileum. Neurogastroenterol Motil. 14(3): 255-264. https://doi.org/10.1046/j.1365-2982.2002.00325.x PMid:12061910
- Gustafsson, B.I., Bakke, I., Tømmerås, K., Waldum, H.L. (2006). A new method for visualization of gut mucosal cells, describing the enterochromaffin cell in the rat gastrointestinal tract. Scand J Gastroenterol. 41(4): 390-395. https://doi.org/10.1080/00365520500331281 PMid:16635905
- Ahern, G.P. (2011). 5-HT and the immune system. Curr Opin Pharmacol. 11(1): 29-33. https://doi.org/10.1016/j.coph.2011.02.004 PMid:21393060 PMCid:PMC3144148
- Shajib, M.S., Khan, W.I. (2015). The role of serotonin and its receptors in activation of immune responses and infammation. Acta Physiol (Oxf). 213(3): 561-574. https://doi.org/10.1111/apha.12430 PMid:25439045
- Shajib, M.S., Baranov, A., Khan, W.I. (2017). Diverse efects of gut-derived serotonin in intestinal infammation. ACS Chem Neurosci. 8(5): 920-931. https://doi.org/10.1021/acschemneuro.6b00414 PMid:28288510
- Hadengue, A., Moreau, R., Cerini, R., Koshy, A., Lee, S.S., Lebrec, D. (1989). Combination of ketanserin and verapamil or propranolol in patients with alcoholic cirrhosis: search for an additive effect. Hepatology 9(1): 83-87. https://doi.org/10.1002/hep.1840090113 PMid:2908872
- Vorobioff, J., Garcia-Tsao, G., Groszmann, R., Aceves, G., Picabea, E., Villavicencio, R., Hernandez-Ortiz, J. (1989). Long-term hemodynamic effects of ketanserin, a 5-hydroxytryptamine blocker, in portal hypertensive patients. Hepatology 9(1): 88-91. https://doi.org/10.1002/hep.1840090114 PMid:2908873
- Islam, M.Z., Williams, B.C., Madhavan, K.K., Hayes, P.C., Hadoke, P.W. (2000). Selective alteration of agonist-mediated contraction in hepatic arteries isolated from patients with cir rhosis. Gastroenterology 118(4): 765-771. https://doi.org/10.1016/S0016-5085(00)70146-6 PMid:10734028
- Marzioni, M., Glaser, S., Francis, H., Marucci, L., Benedetti, A., Alvaro, D., Taffetani, S., et al. (2005). Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin. Gastroenterology. 128(1): 121-137. https://doi.org/10.1053/j.gastro.2004.10.002 PMid:15633129
- Cosme, A., Barrio, J., Lobo, C., Gil, I., Castiella, A., Arenas, J.I. (1996). Acute cholestasis by fluoxetine. Am J Gastroenterol. 91(11): 2449-2450.
- Ruddell, R.G., Mann, D.A., Ramm, G.A. (2008). The function of serotonin within the liver. J Hepatol. 48(4): 666-675. https://doi.org/10.1016/j.jhep.2008.01.006 PMid:18280000
- Mann, D.A, Oakley, F. (2013). Serotonin paracrine signaling in tissue fibrosis. Biochim Biophys Acta. 1832(7): 905-910. https://doi.org/10.1016/j.bbadis.2012.09.009 PMid:23032152 PMCid:PMC3793867
- Omenetti, A., Yang, L., Gainetdinov, R.R., Guy, C.D., Choi, S.S., Chen, W., Caron, M.G., Diehl, A.M. (2011). Paracrine modulation of cholangiocyte serotonin synthesis orchestrates biliary remodeling in adults. Am J Physiol Gastrointest Liver Physiol. 300(2): G303-315. https://doi.org/10.1152/ajpgi.00368.2010 PMid:21071507 PMCid:PMC3043647
- Yu, P.L., Fujimura, M., Okumiya, K., Kinoshita, M., Hasegawa, H., Fujimiya, M. (1999). Immunohistochemical localization of tryptophan hydroxylase in the human and rat gastrointestinal tracts. J Comp Neurol. 411(4): 654-665. https://doi.org/10.1002/(SICI)1096-9861(19990906) 411:4<654::AID-CNE9>3.0.CO;2-H
- Buhner, S., Schemann, M. (2012). Mast cell-nerve axis with a focus on the human gut. Biochim Biophys Acta. 1822(1): 85-92. https://doi.org/10.1016/j.bbadis.2011.06.004 PMid:21704703
- Kushnir-Sukhov, N.M., Brown, J.M., Wu, Y., Kirshenbaum, A., Metcalfe, D.D. (2007). Human mast cells are capable of serotonin synthesis and release. J Allergy Clin Immunol. 119(2): 498-499. https://doi.org/10.1016/j.jaci.2006.09.003 PMid:17291861
- Kushnir-Sukhov, N.M., Brittain, E., Scott, L., Metcalfe, D.D. (2008). Clinical correlates of blood serotonin levels in patients with mastocytosis. Eur J Clin Invest. 38(12): 953-958. https://doi.org/10.1111/j.1365-2362.2008.02047.x PMid:19021721 PMCid:PMC3795418
- Boehme, S.A., Lio, F.M., Sikora, L., Pandit, T.S., Lavrador, K., Rao, S.P., Sriramarao, P. (2004). Cutting edge: serotonin is a chemotactic factor for eosinophils and functions additively with eotaxin. J Immunol. 173(6): 3599-3603. https://doi.org/10.4049/jimmunol.173.6.3599 PMid:15356103
- Kushnir-Sukhov, N.M., Gilfillan, A.M., Coleman, J.W., Brown, J.M., Bruening, S., Toth, M., Metcalfe, D.D. (2006). 5-hydroxytr yptamine induces mast cell adhesion and migration. J Immunol. 177(9):6422-6432. https://doi.org/10.4049/jimmunol.177.9.6422 PMid:17056574
- Idzko, M., Panther, E., Stratz, C., Müller, T., Bayer, H., Zissel, G., Dürk, T., et al. (2004). The serotoninergic receptors of human dendritic cells: identification and coupling to cytokine release. J Immunol. 172(10): 6011-6019. https://doi.org/10.4049/jimmunol.172.10.6011 PMid:15128784
- Müller, T., Dürk, T., Blumenthal, B., Grimm, M., Cicko, S., Panther, E., Sorichter, S., et al. (2009). 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One. 4(7): e6453. https://doi.org/10.1371/journal.pone.0006453 PMid:19649285 PMCid:PMC2714071
- Dürk, T., Panther, E., Müller, T., Sorichter, S., Ferrari, D., Pizzirani, C., Di Virgilio, F., et al. (2005). 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol. 17(5): 599-606. https://doi.org/10.1093/intimm/dxh242 PMid:15802305
- Soga, F., Katoh, N., Inoue, T., Kishimoto, S. (2007). Serotonin activates human monocytes and prevents apoptosis. J Invest Dermatol. 127(8): 1947-1955. https://doi.org/10.1038/sj.jid.5700824 PMid:17429435
- Ghia, J.E., Li, N., Wang, H., Collins, M., Deng, Y., El-Sharkawy, R.T., Côté, F., et al. (2009). Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 137(5): 1649-1660. https://doi.org/10.1053/j.gastro.2009.08.041 PMid:19706294
- Murtaugh, M.P., Monteiro-Riviere, N.A., Panepinto, L. (1996). Swine research breeds, methods, and biomedical models. In: M.E. Tumbleson, Schook L.B., (Eds.), Advances in Swine in Biomedical Research, Vol. 2 (pp. 423-424). Springer New York, NY https://doi.org/10.1007/978-1-4615-5885-9_1
- Walters, E.M., Prather, R.S. (2013). Advancing swine models for human health and diseases. Mo Med. 110(3): 212-215.
- Zhu, H.Y., Li, F., Li, K.W., Zhang, X.W., Wang, J., Ji, F. (2013). Transumbilical endoscopic cholecystectomy in a porcine model. Acta Cir Bras. 28(11): 762-766. https://doi.org/10.1590/S0102-86502013001100003 PMid:24316742
- Gilloteaux, J., Pomerants, B., Kelly, T.R. (1989). Human gallbladder mucosa ultrastructure: evidence of intraepithelial nerve structures. Am J Anat. 184(4): 321-333. https://doi.org/10.1002/aja.1001840407 PMid:2474241
- Cristina, M.L., Lehy, T., Zeitoun, P., Dufougeray, F. (1978). Fine structural classification and comparative distribution of endocrine cells in normal human large intestine. Gastroenterology. 75(1): 20-28. https://doi.org/10.1016/0016-5085(78)93758-7 PMid:95721
- Sjölund, K., Sandén, G., Håkanson, R., Sundler, F. (1983). Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85(5): 1120-1130. https://doi.org/10.1016/S0016-5085(83)80080-8 PMid:6194039
- Buffa, R., Capella, C., Fontana, P., Usellini, L., Solcia, E. (1978). Types of endocrine cells in the human colon and rectum. Cell Tissue Res. 192(2): 227-240. https://doi.org/10.1007/BF00220741 PMid:699014
- Modlin, I.M., Kidd, M., Pfragner, R., Eick, G.N., Champaneria, M.C. (2006). The f unctional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab. 91(6): 2340-2348. https://doi.org/10.1210/jc.2006-0110 PMid:16537680
- Cooke, H.J., (2000). Neurotransmitters in neuronal reflexes regulating intestinal secretion. Ann N Y Acad Sci. 915, 77-80. https://doi.org/10.1111/j.1749-6632.2000.tb05225.x PMid:11193603
- Brown, D.R. (1996). Mucosal protection through active intestinal secretion: neural and paracrine modulation by 5-hydroxytryptamine. Behav Brain Res. 73(1-2): 193-197. https://doi.org/10.1016/0166-4328(96)00095-2 PMid:8788501
- Townsend, D., Casey, M.A., Brown, D.R. (2005). Mediation of neurogenic ion transport by acetylcholine, prostanoids and 5-hydroxytryptamine in porcine ileum. Eur J Pharmacol. 519(3): 285-289. https://doi.org/10.1016/j.ejphar.2005.07.023 PMid:16135363 PMCid:PMC4277208
- Säfsten, B., Sjöblom, M., Flemström, G. (2006). Serotonin increases protective duodenal bicarbonate secretion via enteric ganglia and a 5-HT4-dependent pathway. Scand J Gastroenterol. 41(11): 1279-1289. https://doi.org/10.1080/00365520600641480 PMid:17060121
- Sörensson, J., Jodal, M., Lundgren, O. (2001). Involvement of nerves and calcium channels in the intestinal response to Clostridium difficile toxin A: an experimental study in rats in vivo. Gut 49(1): 56-65. https://doi.org/10.1136/gut.49.1.56 PMid:11413111 PMCid:PMC1728359
- Kordasti, S., Sjövall, H., Lundgren, O., Svensson, L. (2004). Serotonin and vasoactive intestinal peptide antagonists attenuate rotavir us diar rhoea. Gut 53(7): 952-957. https://doi.org/10.1136/gut.2003.033563 PMid:15194642 PMCid:PMC1774112
- Pal, P.K., Sarkar, S., Chattopadhyay, A., Tan, D.X., Bandyopadhyay, D. (2019). Enterochromaffin cells as the souce of melatonin: Key findings and functional relevance in mammals. Melatonin Res. 2(4): 61-82. https://doi.org/10.32794/mr11250041
- Reiter, R.J., Tan, D.X., Mayo, J.C., Sainz, R.M., Leon, J., Bandyopadhyay, D. (2003). Neurally-mediated and neurally-independent benef icial actions of melatonin in the gastrointestinal tract. J Physiol Pharmacol. 54(Suppl 4): 113-125.
- Brookes, S.J., Steele, P.A., Costa, M. (1991). Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurones in the guinea-pig small intestine. Cell Tissue Res. 263(3): 471-481. https://doi.org/10.1007/BF00327280 PMid:1715238
- Galligan, J.J., Costa, M., Furness, J.B. (1988). Changes in surviving nerve fibers associated with submucosal arteries following extrinsic denervation of the small intestine. Cell Tissue Res. 253(3): 647-656. https://doi.org/10.1007/BF00219756 PMid:3180190
- Vanner, S. (2000). Myenteric neurons activate submucosal vasodilator neurons in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol. 279(2): G380-387. https://doi.org/10.1152/ajpgi.2000.279.2.G380 PMid:10915648
- Round, A., Wallis, D.I. (1987). Further studies on the blockade of 5-HT depolarizations of rabbit vagal afferent and sympathetic ganglion cells by MDL 72222 and other antagonists. Neuropharmacology 26(1): 39-48. https://doi.org/10.1016/0028-3908(87)90042-6 PMid:3561718
- Hillsley, K., Grundy, D. (1998). Sensitivity to 5-hydroxytr yptamine in different afferent subpopulations within mesenteric nerves supplying the rat jejunum. J Physiol. 509(Pt 3): 717-727. https://doi.org/10.1111/j.1469-7793.1998.717bm.x PMid:9596794 PMCid:PMC2230991
- Glatzle, J., Sternini, C., Robin, C., Zittel, T.T., Wong, H., Reeve, J.R. Jr, Raybould, H.E. (2002). Expression of 5-HT3 receptors in the rat gastrointestinal tract. Gastroenterology 123(1): 217-226. https://doi.org/10.1053/gast.2002.34245 PMid:12105850
- Zhu, J.X., Zhu, X.Y., Owyang, C., Li, Y. (2001). Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J Physiol. 530(Pt 3): 431-442. Retraction in: J Physiol. 2023 May; 601(10): 2047. https://doi.org/10.1111/j.1469-7793.2001.0431k.x PMid:11158274 PMCid:PMC2278417