Have a personal or library account? Click to login
Serotonin Immunoreactive Cells in Extrahepatic Bile Ducts, Major Duodenal Papilla and Gallbladder in the Domestic Pig Cover

Serotonin Immunoreactive Cells in Extrahepatic Bile Ducts, Major Duodenal Papilla and Gallbladder in the Domestic Pig

By: Ivaylo Stefanov  
Open Access
|Feb 2024

References

  1. Patel, B.A., Bian, X., Quaiserova-Mocko, V., Galligan, J.J., Swain, G.M. (2007). In vitro continuous amperometric monitoring of 5-hydroxytryptamine release from enterochromaffin cells of the guinea pig ileum. Analyst 132, 41-47. https://doi.org/10.1039/B611920D PMid:17180178
  2. Gershon, M.D. (2005). Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol. 39(5 Suppl. 3): S184-193. https://doi.org/10.1097/01.mcg.0000156403.37240.30 PMid:15798484
  3. Hoffman, J.M., Tyler, K., MacEachern, S.J., Balemba, O.B., Johnson, A.C., Brooks, E.M., Zhao, H., et al. (2012). Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 142(4): 844-854.e4. https://doi.org/10.1053/j.gastro.2011.12.041 PMid:22226658 PMCid:PMC3477545
  4. Côté, F., Thévenot, E., Fligny, C., Fromes, Y., Darmon, M., Ripoche, M.A., Bayard, E., et al. (2003). Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc Natl Acad Sci U S A. 100(23): 13525-13530. https://doi.org/10.1073/pnas.2233056100 PMid:14597720 PMCid:PMC263847
  5. Betari, N., Sahlholm, K., Ishizuka, Y., Teigen, K., Haavik, J. (2020). Discovery and biological characterization of a novel scaffold for potent inhibitors of peripheral serotonin synthesis. Future Med Chem. 12(16): 1461-1474. https://doi.org/10.4155/fmc-2020-0127 PMid:32752885
  6. Walther, D.J., Bader, M. (2003). A unique central tryptophan hydroxylase isofor m. Biochem Pharmacol. 66(9): 1673-1680. https://doi.org/10.1016/S0006-2952(03)00556-2 PMid:14563478
  7. Raybould, H.E. (2010). Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci. 153(1-2): 41-46. https://doi.org/10.1016/j.autneu.2009.07.007 PMid:19674941 PMCid:PMC3014315
  8. Gershon, M.D. (1999). Roles played by 5-hydroxytryptamine in the physiology of the bowel. Aliment Pharmacol Ther. 13, (Suppl 2): 15-30. https://doi.org/10.1046/j.1365-2036.1999.00002.x-i2
  9. Hatami-Monazah, H., Abdallah, O. (1978). Study on the morphology of the gall-bladder of the goat. Acta Anat (Basel). 100(2): 203-209. https://doi.org/10.1159/000144900 PMid:619497
  10. Sand, J., Tainio, H., Nordback, I. (1993). Neuropeptides in pig sphincter of Oddi, bile duct, gallbladder, and duodenum. Dig Dis Sci. 38(4): 694-700. https://doi.org/10.1007/BF01316802 PMid:8462369
  11. Gulubova, M.V., Valkova, I.V., Ivanova, K.V., Ganeva, I.G., Prangova, D.K., Ignatova, M.M.K., Vasilev, S.R., Stefanov, I.S. (2017). Endocrine cells in pig’s gallbladder, ductus cysticus and ductus choledochus with special reference to ghrelin. Bulg Chem Commun. Special Issue E. 184-190.
  12. Zuccarello, B., Spada, A., Turiaco, N., Villari, D., Parisi, S., Francica, I., Fazzari, C., et al. (2009). Intramural ganglion str uctures in esophageal atresia: a morphologic and immunohistochemical study. Int Jo Pediatr. 2009:695837. https://doi.org/10.1155/2009/695837 PMid:20041008 PMCid:PMC2778171
  13. Costa, M., Brookes, S.J., Steele, P.A., Gibbins, I., Burcher, E., Kandiah, C.J. (1996). Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 75(3): 949-967. https://doi.org/10.1016/0306-4522(96)00275-8 PMid:8951887
  14. Costa, M., Furness, J.B., Cuello, A.C., Verhofstad, A.A., Steinbusch, H.W., Elde, R.P. (1982). Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: their visualization and reactions to drug treatment. Neuroscience 7(2): 351-363. https://doi.org/10.1016/0306-4522(82)90272-X PMid:6210850
  15. Young, H.M., Furness, J.B. (1995). Ultrastructural examination of the targets of serotonin-immunoreactive descending interneurons in the guinea pig small intestine. J Comp Neurol. 356(1): 101-114. https://doi.org/10.1002/cne.903560107 PMid:7629305
  16. Galligan, J.J., LePard, K.J., Schneider, D.A., Zhou, X. (2000). Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J Auton Nerv Syst. 81(1-3): 97-103. https://doi.org/10.1016/S0165-1838(00)00130-2 PMid:10869707
  17. Monro, R.L., Bertrand, P.P., Bornstein, J.C. (2002). ATP and 5-HT are the principal neurotransmitters in the descending excitatory reflex pathway of the guinea-pig ileum. Neurogastroenterol Motil. 14(3): 255-264. https://doi.org/10.1046/j.1365-2982.2002.00325.x PMid:12061910
  18. Gustafsson, B.I., Bakke, I., Tømmerås, K., Waldum, H.L. (2006). A new method for visualization of gut mucosal cells, describing the enterochromaffin cell in the rat gastrointestinal tract. Scand J Gastroenterol. 41(4): 390-395. https://doi.org/10.1080/00365520500331281 PMid:16635905
  19. Ahern, G.P. (2011). 5-HT and the immune system. Curr Opin Pharmacol. 11(1): 29-33. https://doi.org/10.1016/j.coph.2011.02.004 PMid:21393060 PMCid:PMC3144148
  20. Shajib, M.S., Khan, W.I. (2015). The role of serotonin and its receptors in activation of immune responses and infammation. Acta Physiol (Oxf). 213(3): 561-574. https://doi.org/10.1111/apha.12430 PMid:25439045
  21. Shajib, M.S., Baranov, A., Khan, W.I. (2017). Diverse efects of gut-derived serotonin in intestinal infammation. ACS Chem Neurosci. 8(5): 920-931. https://doi.org/10.1021/acschemneuro.6b00414 PMid:28288510
  22. Hadengue, A., Moreau, R., Cerini, R., Koshy, A., Lee, S.S., Lebrec, D. (1989). Combination of ketanserin and verapamil or propranolol in patients with alcoholic cirrhosis: search for an additive effect. Hepatology 9(1): 83-87. https://doi.org/10.1002/hep.1840090113 PMid:2908872
  23. Vorobioff, J., Garcia-Tsao, G., Groszmann, R., Aceves, G., Picabea, E., Villavicencio, R., Hernandez-Ortiz, J. (1989). Long-term hemodynamic effects of ketanserin, a 5-hydroxytryptamine blocker, in portal hypertensive patients. Hepatology 9(1): 88-91. https://doi.org/10.1002/hep.1840090114 PMid:2908873
  24. Islam, M.Z., Williams, B.C., Madhavan, K.K., Hayes, P.C., Hadoke, P.W. (2000). Selective alteration of agonist-mediated contraction in hepatic arteries isolated from patients with cir rhosis. Gastroenterology 118(4): 765-771. https://doi.org/10.1016/S0016-5085(00)70146-6 PMid:10734028
  25. Marzioni, M., Glaser, S., Francis, H., Marucci, L., Benedetti, A., Alvaro, D., Taffetani, S., et al. (2005). Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin. Gastroenterology. 128(1): 121-137. https://doi.org/10.1053/j.gastro.2004.10.002 PMid:15633129
  26. Cosme, A., Barrio, J., Lobo, C., Gil, I., Castiella, A., Arenas, J.I. (1996). Acute cholestasis by fluoxetine. Am J Gastroenterol. 91(11): 2449-2450.
  27. Ruddell, R.G., Mann, D.A., Ramm, G.A. (2008). The function of serotonin within the liver. J Hepatol. 48(4): 666-675. https://doi.org/10.1016/j.jhep.2008.01.006 PMid:18280000
  28. Mann, D.A, Oakley, F. (2013). Serotonin paracrine signaling in tissue fibrosis. Biochim Biophys Acta. 1832(7): 905-910. https://doi.org/10.1016/j.bbadis.2012.09.009 PMid:23032152 PMCid:PMC3793867
  29. Omenetti, A., Yang, L., Gainetdinov, R.R., Guy, C.D., Choi, S.S., Chen, W., Caron, M.G., Diehl, A.M. (2011). Paracrine modulation of cholangiocyte serotonin synthesis orchestrates biliary remodeling in adults. Am J Physiol Gastrointest Liver Physiol. 300(2): G303-315. https://doi.org/10.1152/ajpgi.00368.2010 PMid:21071507 PMCid:PMC3043647
  30. Yu, P.L., Fujimura, M., Okumiya, K., Kinoshita, M., Hasegawa, H., Fujimiya, M. (1999). Immunohistochemical localization of tryptophan hydroxylase in the human and rat gastrointestinal tracts. J Comp Neurol. 411(4): 654-665. https://doi.org/10.1002/(SICI)1096-9861(19990906) 411:4<654::AID-CNE9>3.0.CO;2-H
  31. Buhner, S., Schemann, M. (2012). Mast cell-nerve axis with a focus on the human gut. Biochim Biophys Acta. 1822(1): 85-92. https://doi.org/10.1016/j.bbadis.2011.06.004 PMid:21704703
  32. Kushnir-Sukhov, N.M., Brown, J.M., Wu, Y., Kirshenbaum, A., Metcalfe, D.D. (2007). Human mast cells are capable of serotonin synthesis and release. J Allergy Clin Immunol. 119(2): 498-499. https://doi.org/10.1016/j.jaci.2006.09.003 PMid:17291861
  33. Kushnir-Sukhov, N.M., Brittain, E., Scott, L., Metcalfe, D.D. (2008). Clinical correlates of blood serotonin levels in patients with mastocytosis. Eur J Clin Invest. 38(12): 953-958. https://doi.org/10.1111/j.1365-2362.2008.02047.x PMid:19021721 PMCid:PMC3795418
  34. Boehme, S.A., Lio, F.M., Sikora, L., Pandit, T.S., Lavrador, K., Rao, S.P., Sriramarao, P. (2004). Cutting edge: serotonin is a chemotactic factor for eosinophils and functions additively with eotaxin. J Immunol. 173(6): 3599-3603. https://doi.org/10.4049/jimmunol.173.6.3599 PMid:15356103
  35. Kushnir-Sukhov, N.M., Gilfillan, A.M., Coleman, J.W., Brown, J.M., Bruening, S., Toth, M., Metcalfe, D.D. (2006). 5-hydroxytr yptamine induces mast cell adhesion and migration. J Immunol. 177(9):6422-6432. https://doi.org/10.4049/jimmunol.177.9.6422 PMid:17056574
  36. Idzko, M., Panther, E., Stratz, C., Müller, T., Bayer, H., Zissel, G., Dürk, T., et al. (2004). The serotoninergic receptors of human dendritic cells: identification and coupling to cytokine release. J Immunol. 172(10): 6011-6019. https://doi.org/10.4049/jimmunol.172.10.6011 PMid:15128784
  37. Müller, T., Dürk, T., Blumenthal, B., Grimm, M., Cicko, S., Panther, E., Sorichter, S., et al. (2009). 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One. 4(7): e6453. https://doi.org/10.1371/journal.pone.0006453 PMid:19649285 PMCid:PMC2714071
  38. Dürk, T., Panther, E., Müller, T., Sorichter, S., Ferrari, D., Pizzirani, C., Di Virgilio, F., et al. (2005). 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol. 17(5): 599-606. https://doi.org/10.1093/intimm/dxh242 PMid:15802305
  39. Soga, F., Katoh, N., Inoue, T., Kishimoto, S. (2007). Serotonin activates human monocytes and prevents apoptosis. J Invest Dermatol. 127(8): 1947-1955. https://doi.org/10.1038/sj.jid.5700824 PMid:17429435
  40. Ghia, J.E., Li, N., Wang, H., Collins, M., Deng, Y., El-Sharkawy, R.T., Côté, F., et al. (2009). Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 137(5): 1649-1660. https://doi.org/10.1053/j.gastro.2009.08.041 PMid:19706294
  41. Murtaugh, M.P., Monteiro-Riviere, N.A., Panepinto, L. (1996). Swine research breeds, methods, and biomedical models. In: M.E. Tumbleson, Schook L.B., (Eds.), Advances in Swine in Biomedical Research, Vol. 2 (pp. 423-424). Springer New York, NY https://doi.org/10.1007/978-1-4615-5885-9_1
  42. Walters, E.M., Prather, R.S. (2013). Advancing swine models for human health and diseases. Mo Med. 110(3): 212-215.
  43. Zhu, H.Y., Li, F., Li, K.W., Zhang, X.W., Wang, J., Ji, F. (2013). Transumbilical endoscopic cholecystectomy in a porcine model. Acta Cir Bras. 28(11): 762-766. https://doi.org/10.1590/S0102-86502013001100003 PMid:24316742
  44. Gilloteaux, J., Pomerants, B., Kelly, T.R. (1989). Human gallbladder mucosa ultrastructure: evidence of intraepithelial nerve structures. Am J Anat. 184(4): 321-333. https://doi.org/10.1002/aja.1001840407 PMid:2474241
  45. Cristina, M.L., Lehy, T., Zeitoun, P., Dufougeray, F. (1978). Fine structural classification and comparative distribution of endocrine cells in normal human large intestine. Gastroenterology. 75(1): 20-28. https://doi.org/10.1016/0016-5085(78)93758-7 PMid:95721
  46. Sjölund, K., Sandén, G., Håkanson, R., Sundler, F. (1983). Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85(5): 1120-1130. https://doi.org/10.1016/S0016-5085(83)80080-8 PMid:6194039
  47. Buffa, R., Capella, C., Fontana, P., Usellini, L., Solcia, E. (1978). Types of endocrine cells in the human colon and rectum. Cell Tissue Res. 192(2): 227-240. https://doi.org/10.1007/BF00220741 PMid:699014
  48. Modlin, I.M., Kidd, M., Pfragner, R., Eick, G.N., Champaneria, M.C. (2006). The f unctional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab. 91(6): 2340-2348. https://doi.org/10.1210/jc.2006-0110 PMid:16537680
  49. Cooke, H.J., (2000). Neurotransmitters in neuronal reflexes regulating intestinal secretion. Ann N Y Acad Sci. 915, 77-80. https://doi.org/10.1111/j.1749-6632.2000.tb05225.x PMid:11193603
  50. Brown, D.R. (1996). Mucosal protection through active intestinal secretion: neural and paracrine modulation by 5-hydroxytryptamine. Behav Brain Res. 73(1-2): 193-197. https://doi.org/10.1016/0166-4328(96)00095-2 PMid:8788501
  51. Townsend, D., Casey, M.A., Brown, D.R. (2005). Mediation of neurogenic ion transport by acetylcholine, prostanoids and 5-hydroxytryptamine in porcine ileum. Eur J Pharmacol. 519(3): 285-289. https://doi.org/10.1016/j.ejphar.2005.07.023 PMid:16135363 PMCid:PMC4277208
  52. Säfsten, B., Sjöblom, M., Flemström, G. (2006). Serotonin increases protective duodenal bicarbonate secretion via enteric ganglia and a 5-HT4-dependent pathway. Scand J Gastroenterol. 41(11): 1279-1289. https://doi.org/10.1080/00365520600641480 PMid:17060121
  53. Sörensson, J., Jodal, M., Lundgren, O. (2001). Involvement of nerves and calcium channels in the intestinal response to Clostridium difficile toxin A: an experimental study in rats in vivo. Gut 49(1): 56-65. https://doi.org/10.1136/gut.49.1.56 PMid:11413111 PMCid:PMC1728359
  54. Kordasti, S., Sjövall, H., Lundgren, O., Svensson, L. (2004). Serotonin and vasoactive intestinal peptide antagonists attenuate rotavir us diar rhoea. Gut 53(7): 952-957. https://doi.org/10.1136/gut.2003.033563 PMid:15194642 PMCid:PMC1774112
  55. Pal, P.K., Sarkar, S., Chattopadhyay, A., Tan, D.X., Bandyopadhyay, D. (2019). Enterochromaffin cells as the souce of melatonin: Key findings and functional relevance in mammals. Melatonin Res. 2(4): 61-82. https://doi.org/10.32794/mr11250041
  56. Reiter, R.J., Tan, D.X., Mayo, J.C., Sainz, R.M., Leon, J., Bandyopadhyay, D. (2003). Neurally-mediated and neurally-independent benef icial actions of melatonin in the gastrointestinal tract. J Physiol Pharmacol. 54(Suppl 4): 113-125.
  57. Brookes, S.J., Steele, P.A., Costa, M. (1991). Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurones in the guinea-pig small intestine. Cell Tissue Res. 263(3): 471-481. https://doi.org/10.1007/BF00327280 PMid:1715238
  58. Galligan, J.J., Costa, M., Furness, J.B. (1988). Changes in surviving nerve fibers associated with submucosal arteries following extrinsic denervation of the small intestine. Cell Tissue Res. 253(3): 647-656. https://doi.org/10.1007/BF00219756 PMid:3180190
  59. Vanner, S. (2000). Myenteric neurons activate submucosal vasodilator neurons in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol. 279(2): G380-387. https://doi.org/10.1152/ajpgi.2000.279.2.G380 PMid:10915648
  60. Round, A., Wallis, D.I. (1987). Further studies on the blockade of 5-HT depolarizations of rabbit vagal afferent and sympathetic ganglion cells by MDL 72222 and other antagonists. Neuropharmacology 26(1): 39-48. https://doi.org/10.1016/0028-3908(87)90042-6 PMid:3561718
  61. Hillsley, K., Grundy, D. (1998). Sensitivity to 5-hydroxytr yptamine in different afferent subpopulations within mesenteric nerves supplying the rat jejunum. J Physiol. 509(Pt 3): 717-727. https://doi.org/10.1111/j.1469-7793.1998.717bm.x PMid:9596794 PMCid:PMC2230991
  62. Glatzle, J., Sternini, C., Robin, C., Zittel, T.T., Wong, H., Reeve, J.R. Jr, Raybould, H.E. (2002). Expression of 5-HT3 receptors in the rat gastrointestinal tract. Gastroenterology 123(1): 217-226. https://doi.org/10.1053/gast.2002.34245 PMid:12105850
  63. Zhu, J.X., Zhu, X.Y., Owyang, C., Li, Y. (2001). Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J Physiol. 530(Pt 3): 431-442. Retraction in: J Physiol. 2023 May; 601(10): 2047. https://doi.org/10.1111/j.1469-7793.2001.0431k.x PMid:11158274 PMCid:PMC2278417
Language: English
Page range: 23 - 35
Submitted on: Jul 17, 2023
|
Accepted on: Dec 29, 2023
|
Published on: Feb 9, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Ivaylo Stefanov, published by Ss. Cyril and Methodius University in Skopje
This work is licensed under the Creative Commons Attribution 4.0 License.