Have a personal or library account? Click to login
The Effects of Tacrolimus and Erythropoietin on Histopathologic and Functional Recovery of Sciatic Nerve Crush in Mice Cover

The Effects of Tacrolimus and Erythropoietin on Histopathologic and Functional Recovery of Sciatic Nerve Crush in Mice

Open Access
|Jul 2023

References

  1. Jones, S., Eisenberg, H.M., Jia, X. (2016). Advances and future applications of augmented peripheral nerve regeneration. Int J Mol Sci. 17(9): 1494. https://doi.org/10.3390/ijms17091494 PMid:27618010 PMCid:PMC5037771
  2. Panagopoulos, G.N., Megaloikonomos, P.D., Mavrogenis, A.F. (2017). The present and future for peripheral nerve regeneration. Orthopedics 40(1): e141-e156. https://doi.org/10.3928/01477447-20161019-01
  3. Labroo, P., Ho, S., Sant, H., Shea, J., Gale, B.K., Agarwal, J. (2016). Controlled delivery of FK506 to improve nerve regeneration. Shock 46(3S): 154-159. https://doi.org/10.1097/SHK.0000000000000628 PMid:27058050
  4. Caillaud, M., Chantemargue, B., Richard, L., Vignaud, L., Favreau, F., Faye, P.A., Vignoles, P.A., et al. (2018). Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress. Neuropharmacology 139, 98-116. https://doi.org/10.1016/j.neuropharm.2018.07.001 PMid:30018000
  5. Chen, M.M., Qin, J., Chen, S.J., Yao, L.M., Zhang, L.U., Yin, Z.Q., Liao, H. (2017). Quercetin promotes motor and sensory function recovery following sciatic nerve-crush injury in C57BL/6J mice. J Nutr Biochem. 46, 57-67. https://doi.org/10.1016/j.jnutbio.2017.04.006 PMid:28458138
  6. Imran, A., Xiao, L., Ahmad, W., Anwar, H., Rasul, A., Imran, M., Aziz, N., et al. (2019). Foeniculum vulgare (Fennel) promotes functional recovery and ameliorates oxidative stress following a lesion to the sciatic nerve in mouse model. J Food Biochem. 43(9): e12983. https://doi.org/10.1111/jfbc.12983
  7. Elfar, J.C., Jacobson, J.A., Puzas, J.E., Rosier, R.N., Zuscik, M.J. (2008). Erythropoietin accelerates functional recovery after peripheral nerve injury. J Bone Joint Surg Am. 90(8): 1644-1653. https://doi.org/10.2106/JBJS.G.00557 PMid:18676893 PMCid:PMC4470043
  8. Bhandari, P.S. (2019). Management of peripheral nerve injury. J Clin Orthop Trauma. 10(5): 862-866. https://doi.org/10.1016/j.jcot.2019.08.003 PMid:31528058 PMCid:PMC6739245
  9. Mekaj, A.Y., Morina, A.A., Bytyqi, C.I., Mekaj, Y.H., Duci, S.B. (2014). Application of topical pharmacological agents at the site of peripheral nerve injury and methods used for evaluating the success of the regenerative process. J Orthop Surg Res. 9, 94. https://doi.org/10.1186/s13018-014-0094-3 PMid:25303779 PMCid:PMC4198735
  10. Grinsell, D., Keating, C.P. (2014). Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. BioMed Res Int. 2014, 698256. https://doi.org/10.1155/2014/698256 PMid:25276813 PMCid:PMC4167952
  11. Davis, B., Hilgart, D., Erickson, S., Labroo, P., Burton, J., Sant, H., Shea, J., et al. (2019). Local FK506 delivery at the direct nerve repair site improves nerve regeneration. Muscle Nerve 60(5): 613-620. https://doi.org/10.1002/mus.26656 PMid:31397908
  12. Wang, T., Ito, A., Aoyama, T., Nakahara, R., Nakahata, A., Ji, X., Zhang, J., et al. (2018). Functional evaluation outcomes cor relate with histomorphometric changes in the rat sciatic nerve crush injury model: A comparison between sciatic functional index and kinematic analysis. PLoS One 13(12): e0208985. https://doi.org/10.1371/journal.pone.0208985 PMid:30540822 PMCid:PMC6291147
  13. Feng, X., Yuan, W. (2015). Dexamethasone enhanced functional recovery after sciatic nerve crush injury in rats. BioMed Res Int. 2015: 627923. https://doi.org/10.1155/2015/627923 PMid:25839037 PMCid:PMC4369935
  14. Somay, H., Emon, S.T., Uslu, S., Orakdogen, M., Meric, Z.C., Ince, U., Hakan, T. (2017). The histological effects of ozone therapy on sciatic nerve crush injury in rats. World Neurosurg. 105: 702-708. https://doi.org/10.1016/j.wneu.2017.05.161 PMid:28587982
  15. Suslu, H., Altun, M., Erdivanli, B., Turan Suslu, H. (2013). Comparison of the effects of local and systemic dexamethasone on the rat traumatic sciatic nerve model. Turk Neurosurg. 23(5): 623-629.
  16. Saffari, T.M., Bedar, M., Zuidam, J.M., Shin, A.Y., Baan, C.C., Hesselink, D.A., Hundepool, C.A. (2019). Exploring the neuroregenerative potential of tacrolimus. Expert Rev Clin Pharmacol. 12(11): 1047-1057. https://doi.org/10.1080/17512433.2019.1675507 PMid:31575290
  17. Konofaos, P., Terzis, J.K. (2013). FK506 and nerve regeneration: past, present, and future. J Reconstr Microsurg. 29(3): 141-148. https://doi.org/10.1055/s-0032-1333314 PMid:23322540
  18. Wang, M.S., Zeleny-Pooley, M., Gold, B.G. (1997). Comparative dose-dependence study of FK506 and cyclosporin A on the rate of axonal regeneration in the rat sciatic nerve. J Pharmacol Exp Ther. 282(2): 1084-1093.
  19. Snyder, A.K., Fox, I.K., Nichols, C.M., Rickman, S.R., Hunter, D.A., Tung, T.H., Mackinnon, S.E. (2006). Neuroregenerative effects of preinjury FK-506 administration. Plast Reconstr Surg. 118(2): 360-367. https://doi.org/10.1097/01.prs.0000227628.43867.5b PMid:16874203
  20. Sosa, L., Reyes, O., Kuff ler, D.P. (2005). Immunosuppressants: neuroprotection and promoting neurological recover y following peripheral nerve and spinal cord lesions. Exp Neurol. 195(1): 7-15. https://doi.org/10.1016/j.expneurol.2005.04.016 PMid:15935348
  21. Geary, M.B., Li, H., Zingman, A., Ketz, J., Zuscik, M., de Mesy Bentley, K.L., Noble, M., Elfar, J.C. (2017). Erythropoietin accelerates f unctional recovery after moderate sciatic nerve crush injury. Muscle Nerve 56(1): 143-151. https://doi.org/10.1002/mus.25459 PMid:28168703 PMCid:PMC5420480
  22. Yin, Z.S., Zhang, H., Gao, W. (2010). Erythropoietin promotes functional recovery and enhances nerve regeneration after peripheral nerve injury in rats. AJNR Am J Neuroradiol. 31(3): 509-515. https://doi.org/10.3174/ajnr.A1820 PMid:20037135 PMCid:PMC7963987
  23. Sundem, L., Chris Tseng, K.C., Li, H., Ketz, J., Noble, M., Elfar, J. (2016). Erythropoietin enhanced recovery after traumatic nerve injury: myelination and localized effects. J Hand Surg Am. 41(10): 999-1010. https://doi.org/10.1016/j.jhsa.2016.08.002 PMid:27593486 PMCid:PMC5053901
  24. Uzun, T., Toptas, O., Saylan, A., Carver, H., Turkoglu, S.A. (2019). Evaluation and comparison of the effects of artesunate, dexamethasone, and tacrolimus on sciatic nerve regeneration. J Oral Maxillofac Surg. 77(5): 1092.e1-1092.e12. https://doi.org/10.1016/j.joms.2018.12.019 PMid:30689960
  25. de Souza, L.G., Marcolino, A.M., Kuriki, H.U., Gonçalves, E.C.D., Fonseca, M.C.R., Barbosa, R.I. (2018). Comparative effect of photobiomodulation associated with dexamethasone after sciatic nerve injury model. Lasers Med Sci. 33(6): 1341-1349. https://doi.org/10.1007/s10103-018-2494-9 PMid:29611064
  26. Sun, H., Yang, T., Li, Q., Zhu, Z., Wang, L., Bai, G., Li, D., et al. (2012). Dexamethasone and vitamin B(12) synergistically promote peripheral ner ve regeneration in rats by upregulating the expression of brain-derived neurotrophic factor. Arch Med Sci. 8(5): 924-930. https://doi.org/10.5114/aoms.2012.31623 PMid:23185205 PMCid:PMC3506245
  27. Que, J., Cao, Q., Sui, T., Du, S., Kong, D., Cao, X. (2013). Effect of FK506 in reducing scar formation by inducing fibroblast apoptosis after sciatic nerve injury in rats. Cell Death Dis. 4(3): e526. https://doi.org/10.1038/cddis.2013.56 PMid:23470533 PMCid:PMC3613834
  28. Inserra, M.M., Bloch, D.A., Terris, D.J. (1998). Functional indices for sciatic, peroneal, and posterior tibial nerve lesions in the mouse. Microsurgery 18(2): 119-124. https://doi.org/10.1002/(SICI)1098-2752(1998)18:2 <119::AID-MICR10>3.0.CO;2-0
  29. Petersen, J., Russell, L., Andrus, K., MacKinnon, M., Silver, J., Kliot, M. (1996). Reduction of extraneural scarring by ADCON-T/N after surgical intervention. Neurosurgery 38(5): 976-983. https://doi.org/10.1097/00006123-199605000-00025 PMid:8727824
  30. Yang, R.K., Lowe, J.B., Sobol, J.B., Sen, S.K., Hunter, D.A., Mackinnon, S.E. (2003). Dose-dependent effects of FK506 on neuroregeneration in a rat model. Plast Reconst Surg. 112(7): 1832-1840. https://doi.org/10.1097/01.RS.0000091167.27303.18 PMid:14663227
  31. Labroo, P., Shea, J., Sant, H., Gale, B., Agarwal, J. (2017). Effect of combining FK506 and neurotrophins on neurite branching and elongation. Muscle Nerve 55(4): 570-581. https://doi.org/10.1002/mus.25370 PMid:27503321 PMCid:PMC5517102
  32. Shahraki, M., Mohammadi, R., Najaf pour, A. (2015). Influence of tacrolimus (FK506) on nerve regeneration using allografts: a rat sciatic nerve model. J Oral Maxillofac Surg. 73(7): 1438.e1-9. https://doi.org/10.1016/j.joms.2015.03.032 PMid:25869987
  33. Udina, E., Voda, J., Gold, B.G., Navarro, X. (2002). Comparative dose-dependence study of FK506 on transected mouse sciatic nerve repaired by allograft or xenograft. J Peripher Nerv Syst. 8(3): 145-154. https://doi.org/10.1046/j.1529-8027.2003.03020.x PMid:12904235
  34. de Mesquita Coutinho, P.R., Cristante, A.F., de Barros Filho, T.E.P., Ferreira, R., Dos Santos, G.B. (2016). Effects of tacrolimus and erythropoietin in experimental spinal cord lesion in rats: functional and histological evaluation. Spinal Cord. 54(6): 439-444. https://doi.org/10.1038/sc.2015.172 PMid:26481712 PMCid:PMC5399139
  35. Lykissas, M.G., Sakellariou, E., Vekris, M.D., Kontogeorgakos, V.A., Batistatou, A.K., Mitsionis, G.I., Beris, A.E. (2007). Axonal regeneration stimulated by erythropoietin: an experimental study in rats. J Neurosci Methods. 164(1): 107-115. https://doi.org/10.1016/j.jneumeth.2007.04.008 PMid:17532473
  36. Yan, Y., Sun, H.H., Hunter, D.A., Mackinnon, S.E., Johnson, P.J. (2012). Efficacy of short-term FK506 administration on accelerating nerve regeneration. Neurorehabil Neural Repair. 26(6): 570-580. https://doi.org/10.1177/1545968311431965 PMid:22291040
  37. Mekaj, A.Y., Manxhuka-Kerliu, S., Morina, A.A., Duci, S.B., Shahini, L., Mekaj, Y.H. (2017). Effects of hyaluronic acid and tacrolimus on the prevention of perineural scar formation and on nerve regeneration after sciatic nerve repair in a rabbit model. Eur J Trauma Emerg Surg. 43(4): 497-504. https://doi.org/10.1007/s00068-016-0683-4 PMid:27194249
  38. Ülger, M., Sezer, G., Özyazgan, İ., Özocak, H., Yay, A., Balcıoğlu, E., Yalçın, B., et al. (2021). The effect of erythropoietin and umbilical cord-derived mesenchymal stem cells on nerve regeneration in rats with sciatic nerve injury. J Chem Neuroanat. 114, 101958. https://doi.org/10.1016/j.jchemneu.2021.101958 PMid:33864937
  39. Yin, Y., Xiao, G., Zhang, K., Ying, G., Xu, H., De Melo, B.A.G., Li, S., et al. (2018). Tacrolimus and nerve growth factor treated allografts for neural tissue regeneration. ACS Chem Neurosci. 10(3): 1411-1419. https://doi.org/10.1021/acschemneuro.8b00452 PMid:30525428
  40. Lee, J.I., Min Hur, J., You, J., Lee, D.K. (2020). Functional recover y with histomor phometric analysis of nerves and muscles after combination treatment with erythropoietin and dexamethasone in acute peripheral nerve injury. PLoS One 15(9): e0238208. https://doi.org/10.1371/journal.pone.0238208 PMid:32881928 PMCid:PMC7470391
Language: English
Page range: 147 - 163
Submitted on: Jan 14, 2023
Accepted on: May 10, 2023
Published on: Jul 15, 2023
Published by: Ss. Cyril and Methodius University in Skopje
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Kimia Mansouri, Hamidreza Fattahian, Alireza Jahandideh, Hesameddin Akbarein, published by Ss. Cyril and Methodius University in Skopje
This work is licensed under the Creative Commons Attribution 4.0 License.