Have a personal or library account? Click to login
Bovine Whey Supplementation in a High-Fat Diet Fed Rats Alleviated Offspring’s Cardiac Injury Cover

Bovine Whey Supplementation in a High-Fat Diet Fed Rats Alleviated Offspring’s Cardiac Injury

Open Access
|Mar 2022

References

  1. 1. Hoffman, D.J., Powell, T.L., Barrett, E.S., Hardy, D.B. (2021). Developmental origins of metabolic diseases. Physiol Rev. 101(3): 739-795. https://doi.org/10.1152/physrev.00002.2020 PMid:3327053410.1152/physrev.00002.2020
  2. 2. Siddeek, B., Mauduit, C., Chehade, H., Blin, G., Liand, M., Chindamo, M. et al. (2019). Long-term impact of maternal high-fat diet on offspring cardiac health: role of micro-RNA biogenesis. Cell Death Discov. 5, 71. https://doi.org/10.1038/s41420-019-0153-y PMid:30854230 PMCid:PMC639728010.1038/s41420-019-0153-y
  3. 3. Mdaki, K.S., Larsen, T.D., Wachal, A.L., Schimelpfenig, M.D., Weaver, L.J., Dooyema, S.D. et al. (2016). Maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancy through metabolic stress and mitochondrial dysfunction. Am J Physiol Heart Circ Physiol. 310, H681-H692. https://doi.org/10.1152/ajpheart.00795.2015 PMid:26801311 PMCid:PMC486734510.1152/ajpheart.00795.2015
  4. 4. Dunn, G.A., Bale, T.L. (2009). Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150(11): 4999-5009. https://doi.org/10.1210/en.2009-0500 PMid:19819967 PMCid:PMC277599010.1210/en.2009-0500
  5. 5. Ferey, J.L.A., Boudoures, A.L., Reid, M., Drury, A., Scheaffer, S., Modi, Z. et al. (2019). A maternal high-fat, high-sucrose diet induces transgenerational cardiac mitochondrial dysfunction independently of maternal mitochondrial inheritance. Am J Physiol Heart Circ Physiol. 316(5): H1202-H1210. https://doi.org/10.1152/ajpheart.00013.2019 PMid:30901280 PMCid:PMC658038810.1152/ajpheart.00013.2019
  6. 6. Chatterton, D.E.W., Smithers, G., Roupas, P., Brodkorb, A. (2006). Bioactivity of β-lactoglobulin and α-lactalbumin-Technological implications for processing. Int Dairy J. 16(11): 1229-1240. https://doi.org/10.1016/j.idairyj.2006.06.00110.1016/j.idairyj.2006.06.001
  7. 7. Krissansen, G.W. (2007). Emerging health properties of whey proteins and their clinical implications. J Am Coll Nutr. 26(6): 713S-723S. https://doi.org/10.1080/07315724.2007.10719652 PMid:1818743810.1080/07315724.2007.10719652
  8. 8. El-Sayyad, H.I., El-Ghawet, H.A., El-Bayomi, K.S., Emara, E. (2020). Bovine whey improved the myocardial and lung damage of mother rats fed on a high fat diet. Stud Stem Cells Res Ther. 6(1): 001-008. https://doi.org/10.17352/sscrt.00001410.17352/sscrt.000014
  9. 9. Kandil, N.T.A.H. Sabry, D.A.M., Ashry, N.E.E., El-Sayyad, H.I.H. (2020). Therapeutic potential of whey against aging related cytological damage of adenohypophysis of rat. East African Scholars J Agri Life Sci. 3(9): 304-310. https://doi.org/10.36349/EASJALS.2020.v03i09.00210.36349/EASJALS.2020.v03i09.002
  10. 10. Sasaki, Y.F., Nishidate, E., Izumiyama, F., Matsusaka, N., Tsuda, S. (1997). Simple detection of chemical mutagens by the alkaline single-cell gel electrophoresis (Comet) assay in multiple mouse organs. Mutat Res. 391(3): 215-231. https://doi.org/10.1016/S1383-5718(97)00073-910.1016/S1383-5718(97)00073-9
  11. 11. Deeg, R., Ziegenhorn, J. (1983). Kinetic enzymic method for automated determination of total cholesterol in serum. Clin Chem. 29(10): 1798-1802. https://doi.org/10.1093/clinchem/29.10.1798 PMid:657798110.1093/clinchem/29.10.1798
  12. 12. Fossati, P., Prencipe, L. (1982). Serum triglycerides determined colorimetrically with an enzyme that proceduces hydrogen peroxide. Clin Chem. 28(10): 2077-2080. https://doi.org/10.1093/clinchem/28.10.2077 PMid:681298610.1093/clinchem/28.10.2077
  13. 13. Grove, T.H. (1979). Effect of reagent PH on determination of the high-density lipoprotein cholesterol by precipitation with sodium phototungestate-magnesium. Clin Chem. 25(4): 560-564. https://doi.org/10.1093/clinchem/25.4.560 PMid:3801810.1093/clinchem/25.4.560
  14. 14. Friedewald, W.T., Levy, R.I., Fredrickson, D.S. (1972). Estimation of low density lipoprotein cholesterol in plasma without use preparative ultracentri-fuge. Clin Chem. 18(6): 499-502. https://doi.org/10.1093/clinchem/18.6.499 PMid:433738210.1093/clinchem/18.6.499
  15. 15. Niskikimi, M., Rao, N., Yaki, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazinemethosulfate and molecular oxygen. Biochem Biophys Res Commun. 46(2): 849-854. https://doi.org/10.1016/S0006-291X(72)80218-310.1016/S0006-291X(72)80218-3
  16. 16. Bock, P.P., Kramer, R., Pavelka, M. (1980). Peroxisomes and related particles. In M. Alfert, W. Beermann, L. Goldstein, K.R. Porter, P. Sitte (Eds.), Cell Biology Monographs 7 (pp. 44-74). Springer, Berlin https://doi.org/10.1007/978-3-7091-2055-2_210.1007/978-3-7091-2055-2_2
  17. 17. Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 95(2): 351-358. https://doi.org/10.1016/0003-2697(79)90738-310.1016/0003-2697(79)90738-3
  18. 18. Ribaroff, G.A., Wastnedge, E., Drake, A.J., Sharpe, R.M., Chambers, T.J.G. (2017). Animal models of maternal high fat diet exposure and effects on metabolism in offspring: a meta-regression analysis. Obes Rev. 18(6): 673-686. https://doi.org/10.1111/obr.12524 PMid:28371083 PMCid:PMC543491910.1111/obr.12524543491928371083
  19. 19. Butruille, L., Marousez, L., Pourpe, C., Oger, F., Lecoutre, S., Catheline, D. et al. (2019). Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. Int J Obes (Lond). 43(12): 2381-2393. https://doi.org/10.1038/s41366-018-0310-z PMid:3062231210.1038/s41366-018-0310-z30622312
  20. 20. Guzzardi, M.A., Liistro, T., Gargani, L., Ait Ali, L., D’Angelo, G., Rocchiccioli, S. et al. (2018). Maternal obesity and cardiac development in the offspring: Study in human neonates and minipigs. JACC Cardiovasc Imaging. 11(12): 1750-1755. https://doi.org/10.1016/j.jcmg.2017.08.024 PMid:2915356810.1016/j.jcmg.2017.08.02429153568
  21. 21. Giacco, F., Brownlee, M. (2010). Oxidative stress and diabetic complications. Circ Res. 107(9): 1058-1070. https://doi.org/10.1161/CIRCRESAHA.110.223545 PMid:21030723 PMCid:PMC299692210.1161/CIRCRESAHA.110.223545299692221030723
  22. 22. Magalhães, D.A., Kume, W.T., Correia, F.S., Queiroz, T.S., Allebrandt Neto, E.W., Santos, M.P.D. et al. (2019). High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: a new proposal. An Acad Bras Cienc. 91(1): e20180314. https://doi.org/10.1590/0001-3765201920180314 PMid:3091615710.1590/0001-376520192018031430916157
  23. 23. Xiang, L., Zhang, Q., Chi, C., Wu, G., Lin, Z., Li, J. et al. (2020). Curcumin analog A13 alleviates oxidative stress by activating Nrf2/ARE pathway and ameliorates fibrosis in the myocardium of high-fat-diet and streptozotocin-induced diabetic rats. Diabetol Metab Syndr. 12, 1. https://doi.org/10.1186/s13098-019-0485-z PMid:31921358 PMCid:PMC694790210.1186/s13098-019-0485-z694790231921358
  24. 24. Attia, H.M., Taha, M. (2018). Protective effect of captopril on cardiac fibrosis in diabetic albino rats: a histological and immunohistochemical study. Benha Med J. 35(3): 378-385. https://doi.org/10.4103/bmfj.bmfj_122_1810.4103/bmfj.bmfj_122_18
  25. 25. Sheen, J.M., Yu, H.R., Tain, Y.L., Tsai, W.L., Tiao, M.M., Lin, I.C., Tsai, C.C., Lin, Y.L., Huang, L.T. (2018). Combined maternal and postnatal high-fat diet leads to metabolic syndrome and is effectively reversed by resveratrol: a multiple-organ study. Sci Rep. 8(1): 5607. https://doi.org/10.1038/s41598-018-24010-0 PMid:29618822 PMCid:PMC588480110.1038/s41598-018-24010-0588480129618822
  26. 26. Dasgupta, A., Chow, L., Wells, A., Datta, P. (2001). Effect of elevated concentration of alkaline phosphatase on cardiac troponin I assays. J Clin Lab Anal. 15(4): 175-177. https://doi.org/10.1002/jcla.1023 PMid:11436198 PMCid:PMC680791210.1002/jcla.1023680791211436198
  27. 27. You, A.H., Han, D.W., Ham, S.Y., Lim, W., Song, Y. (2019). Serum alkaline phosphatase as predictor of cardiac and cerebrovascular complications after lumbar spinal fusion surgery in elderly: A retrospective study. J Clin Med. 8(8): 1111. https://doi.org/10.3390/jcm8081111 PMid:31357535 PMCid:PMC672367710.3390/jcm8081111672367731357535
  28. 28. Al-Gebaly, A.S. (2019). Ameliorating role of whey syrup against ageing- related damage of myocardial muscle of Wistar Albino rats. Saudi J Biol Sci. 26(5): 950-956. https://doi.org/10.1016/j.sjbs.2018.03.014 PMid:31303824 PMCid:PMC660059110.1016/j.sjbs.2018.03.014660059131303824
  29. 29. Martin, M., Kopaliani, I., Jannasch, A., Mund, C., Todorov, V., Henle, T. et al. (2015). Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate. Acta Physiol (Oxf). 215(4): 167-176. https://doi.org/10.1111/apha.12578 PMid:2629792810.1111/apha.1257826297928
  30. 30. El-Shinnawy, N.A., Abd Elhalem, S.S., Haggag, N.Z., Badr, G. (2018). Ameliorative role of camel whey protein and rosuvastatin on induced dyslipidemia in mice. Food Funct. 9(2): 1038-1047. https://doi.org/10.1039/C7FO01871A PMid:2934944610.1039/C7FO01871A29349446
  31. 31. Bartfay, W.J., Davis, M.T., Medves, J.M., Lugowski, S. (2003). Milk whey protein decreases oxygen free radical production in a murine model of chronic iron-overload cardiomyopathy. Can J Cardiol. 19(10): 1163-1168.
  32. 32. Mann, P.E., Huynh, K., Widmer, G. (2018). Maternal high fat diet and its consequence on the gut microbiome: A rat model. Gut Microbes. 9(2): 143-154. https://doi.org/10.1080/19490976.2017.1395122 PMid:29135334 PMCid:PMC598979310.1080/19490976.2017.1395122598979329135334
  33. 33. Pace, R.M., Prince, A.L., Ma, J., Belfort, B.D.W., Harvey, A.S., Hu, M. et al. (2018). Modulations in the offspring gut microbiome are refractory to postnatal synbiotic supplementation among juvenile primates. BMC Microbiol. 18, 28. https://doi.org/10.1186/s12866-018-1169-9 PMid:29621980 PMCid:PMC588720110.1186/s12866-018-1169-9588720129621980
Language: English
Page range: 89 - 99
Submitted on: Feb 5, 2021
Accepted on: Aug 18, 2021
Published on: Mar 29, 2022
Published by: Ss. Cyril and Methodius University in Skopje
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Eman Mohammed Emara, Hassan Ibrahim El-Sayyad, Heba Atef El-Ghaweet, published by Ss. Cyril and Methodius University in Skopje
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.