Have a personal or library account? Click to login
The Effect of Alkaline Water and Sodium Ascorbate on Glucose and Cortisol Levels During Acute Hyperthermic Stress in White Laboratory Rats Cover

The Effect of Alkaline Water and Sodium Ascorbate on Glucose and Cortisol Levels During Acute Hyperthermic Stress in White Laboratory Rats

Open Access
|Oct 2021

References

  1. 1. Shirahata, S., Kabayama, S., Nakano, M., Miura, T., Kusumoto, K., Gotoh, M., Hayashi, H., et al. (1997). Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem Biophys Res Commun. 234, 269-274. <a href="https://doi.org/10.1006/bbrc.1997.6622" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1006/bbrc.1997.6622</a> PMid:916900110.1006/bbrc.1997.66229169001
  2. 2. Kashiwagi, T., Hamasaki, T., Kabayama, S., Takaki, M., Teruya, K., Katakura, Y., et al. (2005). Suppression of oxidative stress-induced apoptosis of neuronal cells by electrolyzed reduced water. In: Gòdia F., Fussenegger M. (Eds.), Animal cell technology meets genomics. ESACT Proceedings, Vol 2. (pp. 257-259). Dordrecht: Springer <a href="https://doi.org/10.1007/1-4020-3103-3_5010.1007/1-4020-3103-3_50" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/1-4020-3103-3_5010.1007/1-4020-3103-3_50</a>
  3. 3. Watanabe, T. (1995). Effect of alkaline ionized water on reproduction in gestational and lactational rats. J Toxicol Sci. 20, 135-142. <a href="https://doi.org/10.2131/jts.20.135" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2131/jts.20.135</a> PMid:747389110.2131/jts.20.1357473891
  4. 4. Hanaoka, K. (2001). Antioxidant effects of reduced water produced by electrolysis of sodium chloride solutions. J Appl Electrochem. 31, 1307-1313. <a href="https://doi.org/10.1023/A:101382500970110.1023/A:1013825009701" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1023/A:101382500970110.1023/A:1013825009701</a>
  5. 5. Oda, M., Kusumoto, K., Teruya, K., Hara, T., Maki, S., Kabayama, S., et al. (1999). Electrolyzed and natural reduced water exhibit insulin-like activity on glucose uptake into muscle cells and adipocytes. In: A. Bernard, B. Griffiths, W. Noe, F. Wurm (Eds.), Animal cell technology: Products from cells, cells as products. (pp. 425-427). Dordrecht: Kluwer Academic Publishers <a href="https://doi.org/10.1007/0-306-46875-1_9010.1007/0-306-46875-1_90" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/0-306-46875-1_9010.1007/0-306-46875-1_90</a>
  6. 6. Kim, J.M., Yokoyama, K. (1997). Effects of alkaline ionized water on spontaneously diabetic GK-rats fed sucrose. Korean J Lab Anim Sci. 13, 187-190.
  7. 7. Watanabe, T., Kishikawa, Y., Shirai, W. (1997). Influence of alkaline ionized water on rat erythrocyte hexokinase activity and myocardium. J Toxicol Sci. 22, 141-152. <a href="https://doi.org/10.2131/jts.22.2_141" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2131/jts.22.2_141</a> PMid:919801110.2131/jts.22.2_1419198011
  8. 8. Li, Y.P., Nishimura, T., Teruya, K., Maki, T., Komatsu, T., Hamasaki, T., et al. (2002). Protective mechanism of reduced water against alloxan-induced pancreatic β-cell damage: scavenging effect against reactive oxygen species. Cytotechnology 40(1-3): 139-149.
  9. 9. Li, Y.P., Teruya, K., Katakura, Y., Kabayama, S., Otsubo, K., Morisawa, S., et al. (2005). Effect of reduced water on the apoptotic cell death triggered by oxidative stress in pancreatic β HIT-T15 cell. In: Gòdia F., Fussenegger M. (Eds.), Animal cell technology meets genomics. ESACT Proceedings, Vol 2. (pp. 121-124). Dordrecht: Springer <a href="https://doi.org/10.1007/1-4020-3103-3_2110.1007/1-4020-3103-3_21" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/1-4020-3103-3_2110.1007/1-4020-3103-3_21</a>
  10. 10. Li, Y.P., Hamasaki, T., Nakamichi, N., Kashiwagi, T., Komatsu, T., Ye, J., et al. (2011). Suppressive effects of electrolyzed reduced water on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology 63(2): 119-131. <a href="https://doi.org/10.1007/s10616-010-9317-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10616-010-9317-6</a> PMid:21063772 PMCid:PMC308047810.1007/s10616-010-9317-6308047821063772
  11. 11. Li, Y.P., Hamasaki, T., Teruya, K., Nakamichi, N., Gadek, Z., Kashiwagi, T., et al. (2012). Suppressive effects of natural reduced waters on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology 64, 281-297. <a href="https://doi.org/10.1007/s10616-011-9414-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10616-011-9414-1</a> PMid:22143345 PMCid:PMC338638410.1007/s10616-011-9414-1338638422143345
  12. 12. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., et al. (2017). Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017, 8416763. <a href="https://doi.org/10.1155/2017/8416763" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2017/8416763</a> PMid:28819546 PMCid:PMC555154110.1155/2017/8416763555154128819546
  13. 13. Halliwel, B., Gutteridge, J.M.C. (1989). Free radicals in biology and medicine. New York: Oxford University Press
  14. 14. Hall, D.M., Buettner, G.R., Matthes, R.D., Gisolfi, C.V. (1994). Hyperthermia stimulates nitric oxide formation: electron paramagnetic resonance detection of NO-heme in blood. J Appl Physiol. 77, 548-553. <a href="https://doi.org/10.1152/jappl.1994.77.2.548" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1152/jappl.1994.77.2.548</a> PMid:800249910.1152/jappl.1994.77.2.5488002499
  15. 15. Webb, A.L., Villamor, E. (2007). Update: Effects of antioxidant and non-antioxidant vitamin sup plementation on immune function. Nutr Rev. 65, 181. <a href="https://doi.org/10.1111/j.1753-4887.2007.tb00298.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1753-4887.2007.tb00298.x</a> PMid:1756654710.1111/j.1753-4887.2007.tb00298.x17566547
  16. 16. Khassaf, M., McArdle, A., Esanu, C., Vasilaki, A., McArdle, F., Griffiths, R.D., Jackson, M.J. (2003). Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J Physiol. 549(2): 645-652. <a href="https://doi.org/10.1113/jphysiol.2003.040303" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1113/jphysiol.2003.040303</a> PMid:12692182 PMCid:PMC234296110.1113/jphysiol.2003.040303234296112692182
  17. 17. Ardekani, M.A., Ardekani, A.S. (2007). Effect of vitamin C on blood glucose, serum lipids & serum insulin in type II diabetes patients. Indian J Med Res. 126(5): 471-474.
  18. 18. Sargeant, L.A., Wareham, N.J., Bingham, S., Day, N.E., Luben, R.N., Oakes, S., Welch, A., Khaw, K.T. (2000). Vitamin C and hyperglycemia in the European prospective investigation into cancer-Norfolk (EPIC-Norfolk) study: a population based study. Diabetes Care 23(6): 726-732. <a href="https://doi.org/10.2337/diacare.23.6.726" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2337/diacare.23.6.726</a> PMid:1084098610.2337/diacare.23.6.72610840986
  19. 19. Bashaw, M.J., Sicks, F., Palme, R., Schwarzenberger, F., Tordiffe, A.S.W., Ganswindt, A. (2016). Noninvasive assessment of adrenocortical activity as a measure of stress in giraffe (Giraffa camelopardalis). BMC Vet Res. 12, 235. <a href="https://doi.org/10.1186/s12917-016-0864-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s12917-016-0864-8</a> PMid:27756312 PMCid:PMC507001010.1186/s12917-016-0864-8507001027756312
  20. 20. Carnegie, S.D., Schoof, V.A., Jack, K.M. (2011). Rise to power: a case study of male fecal androgen and cortisol levels before and after a non-aggressive rank change in a group of wild white-faced capuchins (Cebus capucinus). Folia Primatol (Basel). 82(6): 299-307. <a href="https://doi.org/10.1159/000337220" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1159/000337220</a> PMid:2248835410.1159/00033722022488354
  21. 21. O'Connor, T.M., O'Halloran, D.J., Shanahan, F. (2000). The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia. QJM. 93, 323-333. <a href="https://doi.org/10.1093/qjmed/93.6.323" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/qjmed/93.6.323</a> PMid:1087318110.1093/qjmed/93.6.32310873181
  22. 22. Aminkeng, F., Ross, C.J.D., Rassekh, S.R., Hwang, S., Rieder, M.J., Bhavsar, A.P., Smith, A., et al. (2016). Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 683-695. <a href="https://doi.org/10.1111/bcp.13008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/bcp.13008</a> PMid:27197003 PMCid:PMC533811110.1111/bcp.13008533811127197003
  23. 23. Lahiri, S., Lloyd, B.B. (1962). The form of vitamin C released by the rat adrenal. Biochem J. 84, 474-477. <a href="https://doi.org/10.1042/bj0840474" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1042/bj0840474</a> PMid:14461598 PMCid:PMC124369910.1042/bj0840474124369914461598
  24. 24. Lahiri, S., Lloyd, B.B. (1962). The effect of stress and corticotrophin on the concentrations of vitamin C in blood and tissues of the rat. Biochem J. 84, 478-483. <a href="https://doi.org/10.1042/bj0840478" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1042/bj0840478</a> PMid:14461597 PMCid:PMC124370010.1042/bj0840478124370014461597
  25. 25. Hooper, M.H., Carr, A., Marik, P.E. (2019). The adrenal-vitamin C axis: from fish to guinea pigs and primates. Crit Care. 23, 29. <a href="https://doi.org/10.1186/s13054-019-2332-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s13054-019-2332-x</a> PMid:30691525 PMCid:PMC634860310.1186/s13054-019-2332-x
  26. 26. Kajiyama, S., Hasegawa, G., Asano, M., Hosoda, H., Fukui, M., Nakamura, N., Adachi, T., et al. (2008). Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res. 28, 137-143. <a href="https://doi.org/10.1016/j.nutres.2008.01.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.nutres.2008.01.008</a> PMid:1908340010.1016/j.nutres.2008.01.008
  27. 27. Mesallamy, H.E., Suwailem, S., Hamdy, N. (2007). Evaluation of C-reactive protein, endothelin-1, adhesion molecule(s), and lipids as inflammatory markers in type 2 diabetes mellitus patients. Mediators Inflamm. 2007, 73635. <a href="https://doi.org/10.1155/2007/73635" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2007/73635</a> PMid:17497038 PMCid:PMC182061810.1155/2007/73635
  28. 28. Jin, D., Ryu, S.H., Kim, H.W., Yang, E.J., Lim, S.J., Ryang, Y.S., Chung, C.H., et al. (2006). Anti-diabetic effect of alkaline-reduced water on OLETF rats. Biosci Biotechnol Biochem. 70, 31-37. <a href="https://doi.org/10.1271/bbb.70.31" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1271/bbb.70.31</a> PMid:1642881810.1271/bbb.70.31
  29. 29. Kim, M.J., Kim, H.K. (2006). Anti-diabetic effects of electrolyzed reduced water in streptozotocin-induced and genetic diabetic mice. Life Sci. 79, 2288-2292. <a href="https://doi.org/10.1016/j.lfs.2006.07.027" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.lfs.2006.07.027</a> PMid:1694539210.1016/j.lfs.2006.07.027
  30. 30. Sreemantula, S., Kilari, E.K., Vardhan, V.A., Jaladi, R. (2005). Influence of antioxidant (L-ascorbic acid) on tolbutamide-induced hy poglycaemia/ antihyperglycaemia in normal and diabetic rats. BMC Endocr Disord. 5, 2.<a href="https://doi.org/10.1186/1472-6823-5-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/1472-6823-5-2</a> PMid:15745442 PMCid:PMC55557110.1186/1472-6823-5-2
  31. 31. Jamieson, D.J. (1998). Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14(16): 1511-1527. <a href="https://doi.org/10.1002/(SICI)1097-0061(199812)14:16" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/(SICI)1097-0061(199812)14:16</a><1511::AID-YEA356>3.0.CO;2-S10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
  32. 32. Chmelíkováa, E., Bolechová, P., Chaloupková, H., Svobodová, I., Jovicic, M., Sedmíková, M. (2019). Salivary cortisol as a marker of acute stress in dogs: A review. Dom Anim Endocrinol. 72, 1-10. <a href="https://doi.org/10.1016/j.domaniend.2019.106428" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.domaniend.2019.106428</a> PMid:3221343910.1016/j.domaniend.2019.106428
  33. 33. McCabe, D., Lisy, K., Lockwood, C., Colbeck, M. (2017). The impact of essential fatty acid, B vitamins, vitamin C, magnesium and zinc supplementation on stress levels in women: a systematic review. JBI Database System Rev Implement Rep. 2, 402-453. <a href="https://doi.org/10.11124/JBISRIR-2016-002965" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.11124/JBISRIR-2016-002965</a> PMid:2817802210.11124/JBISRIR-2016-002965
  34. 34. Haase, C.G., Long, A.K., James, G.F. (2016). Energetics of stress: linking plasma cortisol levels to metabolic rate in mammals. Biol Lett. 12(1): 20150867. <a href="https://doi.org/10.1098/rsbl.2015.0867" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1098/rsbl.2015.0867</a> PMid:26740562 PMCid:PMC478592410.1098/rsbl.2015.0867
  35. 35. Fumeron, C., Nguyen-Khoa, T., Saltiel, C., Kebede, M., Buisson, C., Drüeke, T.B., et al. (2005). Effects of oral vitamin C supplementation on oxidative stress and inflammation status in haemodialysis patients. Nephrol Dial Transplant. 20(9): 1874-1879. <a href="https://doi.org/10.1093/ndt/gfh928" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/ndt/gfh928</a> PMid:1597232210.1093/ndt/gfh928
  36. 36. Stone, I. (1979). Homo sapiens ascorbicus, a biochemically cor rected robust human mutant. Medical Hypotheses 5(6): 711-721. <a href="https://doi.org/10.1016/0306-9877(79)90093-810.1016/0306-9877(79)90093-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0306-9877(79)90093-810.1016/0306-9877(79)90093-8</a>
Language: English
Page range: 179 - 185
Submitted on: May 12, 2021
Accepted on: Jul 14, 2021
Published on: Oct 26, 2021
Published by: Ss. Cyril and Methodius University in Skopje
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Valdrina Ajeti, Slagjana Brsakoska, Vasilka Rendjova, Marija Angelovski, Icko Gjorgoski, published by Ss. Cyril and Methodius University in Skopje
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.