1. Wu, Z., Yang, L., Ren, X., He, G., Zhang, J., Yang, J., Qian, Z., et al. (2016). Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J. 10(3): 609-620. <a href="https://doi.org/10.1038/ismej.2015.138" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ismej.2015.138</a> PMid:26262818 PMCid:PMC481768610.1038/ismej.2015.138481768626262818
6. Dabravolski, S. (2020). The worldwide search for the new mutations in the RNA-directed RNA polymerase domain of SARS-CoV-2 [Supplementary data and figures]. Available at: https://osf.io/xtz6a/. <a href="https://doi.org/10.17605/OSF.IO/XTZ6A" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.17605/OSF.IO/XTZ6A</a>
10. Laimer, J., Hiebl-Flach, J., Lengauer, D., Lackner, P. (2016). MAESTRO web: a web server for structure-based protein stability prediction. Bioinformatics 32(9): 1414-1416. <a href="https://doi.org/10.1093/bioinformatics/btv769" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/bioinformatics/btv769</a> PMid:2674350810.1093/bioinformatics/btv76926743508
12. Pires, D.E.V., Ascher, D.B., Blundell, T.L. (2014). DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 42(W1):W314-W319. <a href="https://doi.org/10.1093/nar/gku411" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/nar/gku411</a> PMid:24829462 PMCid:PMC408614310.1093/nar/gku411408614324829462
14. Smith, E.C., Denison, M.R. (2013). Coronaviruses as DNA wannabes: a new model for the regulation of RNA virus replication fidelity. PLoS Pathog. 9(12): e1003760. <a href="https://doi.org/10.1371/journal.ppat.1003760" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.ppat.1003760</a> PMid:24348241 PMCid:PMC385779910.1371/journal.ppat.1003760385779924348241
16. Frappier, V., Chartier, M., Najmanovich, R.J. (2015). ENCoM server: exploring protein conformational space and the effect of mutations on protein function and stability. Nucleic Acids Res. 43(W1): W395-400. <a href="https://doi.org/10.1093/nar/gkv343" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/nar/gkv343</a> PMid:25883149 PMCid:PMC448926410.1093/nar/gkv343448926425883149
18. Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798): 270-273.
21. Pfeiffer, J.K., Kirkegaard, K. (2003). A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci U S A. 100(12): 7289-7294. <a href="https://doi.org/10.1073/pnas.1232294100" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1073/pnas.1232294100</a> PMid:12754380 PMCid:PMC16586810.1073/pnas.123229410016586812754380
23. Shannon, A., Le, N.T.T., Selisko, B., Eydoux, C., Alvarez, K., Guillemot, J.C., Decroly, E., et al. (2020). Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites. Antiviral Res. 178, 104793. <a href="https://doi.org/10.1016/j.antiviral.2020.104793" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.antiviral.2020.104793</a> PMid:32283108 PMCid:PMC715149510.1016/j.antiviral.2020.104793715149532283108
28. Chand, G.B., Banerjee, A., Azad, G.K. (2020). Identification of novel mutations in RNA-dependent RNA polymerases of SARS-CoV-2 and their implications on its protein structure. PeerJ. 8, e9492. <a href="https://doi.org/10.7717/peerj.9492" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.7717/peerj.9492</a> PMid:32685291 PMCid:PMC733703210.7717/peerj.9492733703232685291