Have a personal or library account? Click to login
Citizen Motivation and Collective Action in the Development of Energy Communities: A Case Study of Latvia Cover

Citizen Motivation and Collective Action in the Development of Energy Communities: A Case Study of Latvia

Open Access
|Jan 2026

References

  1. de Brauwer, C. P. S., & Cohen, J. J. (2020). Analysing the potential of citizen-financed community renewable energy to drive Europe’s low-carbon energy transition. Renewable and Sustainable Energy Reviews, 133, 110300. doi: org/10.1016/j.rser.2020.110300.
  2. Chang, Q., & Kong, D. (2022). Renewable energy policy, green investment, and sustainability of energy firms. Renewable Energy, 192, 118–133. doi: 10.1016/j.renene.2022.04.092.
  3. Dorahaki, S., Muyeen, S. M., & Amjady, N. (2024). A Stackelberg game theory model for integrated community energy storage systems. IEEE Access, 12, 152908–152920. doi: 10.1109/ACCESS.2024.3481155.
  4. Jin, X., Wu, Q., & Jia, H. (2020). Local flexibility markets: Literature review on concepts, models, and clearing methods. Applied Energy, 261, 114387. doi: 10.1016/j.apenergy.2019.114387.
  5. Mohamed, M. A., Jin, T., & Su, W. (2020). Multi-agent energy management of smart islands using primal-dual method of multipliers. Energy, 208, 118306. doi: 10.1016/j.energy.2020.118306.
  6. Bozchalui, M.C., Hashmi, S.A., Hassen, H., Canizares, C.A., & Bhattacharya, K. (2012). Optimal operation of residential energy hubs in smart grids. IEEE Trans. Smart Grid, 3(4), 1755–1766. doi: 10.1109/TSG.2012.2212032.
  7. Koch, J., & Christ, O. (2018). Household participation in an urban photovoltaic project in Switzerland: Exploration of triggers and barriers. Sustainable Cities and Society, 37, 420–426.
  8. Knauf, J., & Wüstenhagen, R. (2023). Crowdsourcing social acceptance: Why, when and how project developers offer citizens to co-invest in wind power. Energy Policy, 173, 113340.
  9. Zadsar, S. S., Rashidinejad, M., Ardestani, S. F. F., Abdollahi, A., & Dorahaki, S. (2025). A behavioural model for negawatt sharing management based on prospect theory in a citizen energy community. Sustainable Energy, Grids and Networks, 42, 101693. doi: 10.1016/j.segan.2025.101693.
  10. Wuebben, D., Romero-Luis, J., & Gertrudix, M. (2020). Civic science and civic energy communities: D.: systematic review and possible alliances for sustainable development objectives. Sustainability, 12, 10096. doi: 10.3390/su122310096.
  11. Hanke, F., Guyet, R., & Feenstra, M. (2021). Do renewable energy communities deliver energy justice? Exploring insights from 71 European cases. Energy Research & Social Science, 80, 102244. doi: 10.1016/j.erss.2021.102244.
  12. Kirkegaard, J. K., Nyborg, S., Georg, S., & Horst, M. (2023). Towards failed renewable energy communities? Activist attempts to change market conditions in the Danish wind energy market. Energy Research & Social Science, 102, 103152. doi: 10.1016/j.erss.2023.103152.
  13. Bielig, M., Kacperski, C., Kutzner, F., & Klingert, S. (2022). Evidence behind the narrative: Critically reviewing the social impact of energy communities in Europe. Energy Research & Social Science, 94, 102859.
  14. Latvian Open Data Portal. (n.d.). Energy community register information [Data set]. Available at: https://data.gov.lv/dati/lv/dataset/energokopienas/resource/7ddd57a3-db80-4e7a-8466-2bf3f4423251
  15. European Commission. (n.d.). Energy communities. Available at: https://energy.ec.europa.eu/topics/markets-and-consumers/energy-consumers-andprosumers/energy-communities_en
  16. State Land Service. (n.d.). Cadastral objects registered in the Cadastre. Available at: https://www.vzd.gov.lv/lv/kadastraregistretie-kadastra-objekti
  17. Lukkarinen, J. P., Salo, M., Faehnle, M., Saarikoski, H., Hyysalo, S., Auvinen, K., … & Marttila, T. (2023). Citizen energy lost in sustainability transitions: Knowledge co-production in a complex governance context. Energy Research & Social Science, 96, 10293. doi: 10.1016/j.erss.2022.102932.
  18. Wang, J., Liu, F., Li, L., & Zhang, J. (2022). More than innovativeness: Comparing residents’ motivations for participating in renewable energy communities in different innovation segments. Renewable Energy, 197, 552–563. doi: 10.1016/j.renene.2022.07.141.
  19. Hackbarth, A., & Loebbe, S. (2022). What motivates private households to participate in energy communities? A literature review and German case study. In S. Löbbe, F. Sioshansi, & D. Robinson (Eds.), Energy communities: Customer-centered, market-driven, welfare-enhancing? (pp. 153–166). doi: 10.1016/B978-0-323-91135-1.00026-2.
  20. Ruggeri, K., Alí, S., Berge, M. L., Bertoldo, G., Bjørndal, L. D., Cortijos-Bernabeu, A., … & Folke, T. (2020). Replicating patterns of prospect theory for decision under risk. Nature Human Behaviour, 4(6), 622–633. doi: 10.1038/s41562-020-0886-x.
  21. Wu, Y., Xu, C., & Zhang, T. (2018). Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China. Energy, 147, 1227–1239. doi: 10.1016/j.energy.2018.01.115.
  22. Fang, H., Li, J., & Song, W. (2018). Sustainable site selection for photovoltaic power plant: An integrated approach based on prospect theory. Energy Conversion and Management, 174, 755–768. doi: 10.1016/j.enconman.2018.08.092.
  23. Jhala, K., Natarajan, B., & Pahwa, A. (2019). Prospect theory-based active consumer behavior under variable electricity pricing. IEEE Transactions on Smart Grid, 10(3), 2809–2819. doi: 10.1109/TSG.2018.2810819.
  24. Kahneman, D., & Tversky, A. (2013). Prospect Theory: An Analysis of decision under risk. Econometrica, 47(2), 99–127.
  25. Noppers, E. H., Keizer, K., Bolderdijk, J. W., & Steg, L. (2014). The adoption of sustainable innovations: Driven by symbolic and environmental motives. Global Environmental Change, 25, 52–62. doi: 10.1016/j.gloenvcha.2014.01.012.
  26. Balcombe, P., Rigby, D., & Azapagic, A. (2014). Investigating the importance of motivations and barriers related to microgeneration uptake in the UK. Applied Energy, 130, 403–418. doi: 10.1016/j.apenergy.2014.05.047.
  27. Schmid, B., Serlavós, M., & Hirt, L. F. (2022). Community energy initiatives as a space for emerging imaginaries? Experiences from Switzerland. In S. Löbbe, F. Sioshansi, & D. Robinson (Eds.), Energy communities (pp. 167–181). Academic Press. doi: 10.1016/B978-0-323-91135-1.00006-7.
  28. Hochstetler, R. L., & Born, P. H. S. (2022). Community energy design models in Brazil: From niches to mainstream. In S. Löbbe, F. Sioshansi, & D. Robinson (Eds.), Energy communities (pp. 317–338). Academic Press.
  29. Cohen, J. J., Azarova, V., Kollmann, A., & Reichl, J. (2021). Preferences for community renewable energy investments in Europe. Energy Economics, 100, 105386. doi: 10.1016/j.eneco.2021.105386.
  30. Haji Bashi, M., De Tommasi, L., Le Cam, A., Sánchez Relaño, L., Lyons, P., Mundó, J., … & Stancioff, C. E. (2023). A review and mapping exercise of energy community regulatory challenges in European member states based on a survey of collective energy actors. Renewable and Sustainable Energy Reviews, 172, 113055. doi: 10.1016/j.rser.2022.113055.
  31. Koltunov, M., Cittati, V.-M., & Bisello, A. (2022). Institutional and policy context of energy communities in France and Italy: How to increase the welfare-enhancing capacity of the sector. In S. Löbbe, F. Sioshansi, & D. Robinson (Eds.), Energy communities (pp. 341–361). Academic Press. doi: 10.1016/B978-0-323-91135-1.00007-9.
  32. Caferra, R., Colasante, A., D’Adamo, I., Morone, A., & Morone, P. (2023). Interacting locally, acting globally: Trust and proximity in social networks for the development of energy communities. Scientific Reports, 13, 16636. doi: 10.1038/.s41598-023-43608-7.
  33. de Almeida, L., Cappelli, V., Klausmann, N., & van Soest, H. (2021). Peer-to-peer trading and energy community in the electricity market: Analysing the literature on law and regulation and looking ahead to future challenges (RSCAS Working Paper No. 2021/35). Robert Schuman Centre for Advanced Studies, European University Institute. doi: 10.13140/RG.2.2.29089.22888.
  34. Reis, I. F. G., Gonçalves, I., Lopes, M. A. R., & Antunes, C. H. (2021). Business models for energy communities: A review of key issues and trends. Renewable and Sustainable Energy Reviews, 144, 111013. doi: 10.1016/j.rser.2021.111013.
  35. New Clean Energy Communities in a Changing European Energy System (NEWCOMERS). (n.d.). Final report on clean energy community business models: Emergence, operation and prospects of European case studies. European Commission. Available at: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5ea426f87&appId=PPGMS
  36. Pierre, G., & Mazaud, C. (2021). Community acceptance of wind energy: Lessons from a case study on a local participatory project in Pays des Mauges (West France). European Countryside, 13(4), 715–733. doi: 10.2478/euco-2021-0038.
  37. Rossetto, N., Verde, S. F., & Bauwens, T. (2022). A taxonomy of energy communities in liberalized energy systems. In S. Löbbe, F. Sioshansi, & D. Robinson (Eds.), Energy communities (pp. 3–23). Academic Press. doi: 10.1016/B978-0-323-91135-1.00004-3.
  38. Scarcello, L., Giordano, A., Mastroianni, C., & Spezzano, G. (2022). Cascade computing model to optimize energy exchanges in prosumer communities. Heliyon, 8(2), e08902. doi: 10.1016/j.heliyon.2022.e08902
  39. Biancardi, A., Colasante, A., D’Adamo, I., Daraio, C., Gastaldi, M., & Uricchio, A.F. (2023). Strategies for developing sustainable communities in higher education institutions. Sci. Rep., 13, 20596. doi: 10.1038/s41598-023-48021-8.
  40. Moroni, S., Alberti, V., Antoniucci, V., & Bisello, A. (2019). Energy communities in the transition to a low-carbon future: A taxonomical approach and some policy dilemmas. Journal of Environmental Management, 236, 45–53. doi: 10.1016/j.jenvman.2019.01.095.
  41. Bauwens, T. (2016). Explaining the diversity of motivations behind community renewable energy. Energy Policy, 93, 278–290. doi: 10.1016/j.enpol.2016.03.017.
  42. Wirth, S. (2014). Communities matter: Institutional preconditions for community renewable energy. Energy Policy, 70, 236–246. doi: 10.1016/j.enpol.2014.03.021.
  43. Walker, G., Devine-Wright, P., Hunter, S., High, H., & Evans, B. (2010). Trust and community: Exploring the meanings, contexts and dynamics of community renewable energy. Energy Policy, 38(6), 2655–2663. doi: 10.1016/j.enpol.2009.05.055.
  44. Lindberg, M. B., & Inderberg, T. H. J. (2023). Just sharing? Energy injustices in the Norwegian solar policy mix for collective prosuming. Energy Research & Social Science, 103, 103219. doi: 10.1016/j.erss.2023.103219
  45. Eid, C., Reneses Guillén, J., Frías Marín, P., & Hakvoort, R. (2014). The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives. Energy Policy, 75, 244–254.
  46. Riga Technical University. (2019). Barriers to energy efficiency and policy instruments for improving energy efficiency. Overview of literature. Institute of Energy Systems and Environment. Available at: https://videszinatne.rtu.lv/en/wp-content/uploads/2021/02/ENG_1_Barriers-to-energy-efficiency-and-policy-instruments-for-improving-energy.pdf
  47. Supreme Court Senate (12 December 2019). Judgment in case SKC-109/2019.
DOI: https://doi.org/10.2478/lpts-2026-0008 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 93 - 111
Published on: Jan 26, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2026 M. Auders, I. Amolina, N. Balinskis, I. Geipele, S. Lapuke, P. Drukis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.