References
- Su, Z., Liu, J., Li, P., & Liang, C. (2024). Study of the durability of membrane electrode assemblies in various accelerated stress tests for proton-exchange membrane water electrolysis. Materials, 17(6), 1331. doi: 10.3390/ma17061331.
- Komers, F., Plachá, D., Van der Bruggen, B., & Velizarov, S. (2025). Towards sustainable proton exchange membranes: Materials and challenges for water electrolysis. Water, 17(22), 3297. doi: 10.3390/w17223297.
- Backurs, A., Jansons, L., & Laizans, A. (2025). Water electrolysis technologies: Comparison of maturity, operational and cost efficiency. In 24th International Scientific Conference “Engineering for Rural Development”: Proceedings, 24, (pp. 275–285). 21–23 May 2025. Jelgava: Latvia University of Life Sciences and Technologies. doi: 10.22616/ERDev.2025.24.TF061.
- Vedrtnam, A., Kalauni, K., & Pahwa, R. (2025). Water electrolysis technologies and their modeling approaches: A comprehensive review. Eng, 6(4), 81. doi: 10.3390/eng6040081.
- Valle, A., Gagliardi, G. G., Borello, D., & Venturini, P. (2025). Control analysis of renewable energy system with hydrogen storage to match energy community demand: A whole-system perspective. Energies, 18(24), 6617. doi: 10.3390/en18246617.
- Wang, W., Qi, Y., Wang, F., Yang, Y., & Guo, Y. (2025). A coordinated control strategy for a coupled wind power and energy storage system for hydrogen production. Energies, 18(8), 2012. doi: 10.3390/en18082012 .
- Di Caro, A., & Vitale, G. (2024). Direct-coupled improvement of a solar-powered proton exchange membrane electrolyzer by a reconfigurable source. Clean Technologies, 6(3), 1203–1228. doi: 10.3390/cleantechnol6030059.
- Kroņkalns, D., Zemīte, L., Jansons, L., & Backurs, A. (2025). Pursuing opportunity: A multi-dimensional analysis of green hydrogen production technologies. Latvian Journal of Physics and Technical Sciences, 62(5), 87–108. doi: 10.2478/lpts-2025-0039.
- Kotowicz, J., Baszczeńska, O., & Niesporek, K. (2024). Cost of green hydrogen. Energies, 17(18), 4651. doi: 10.3390/en17184651.
- Kroņkalns, D., Zemīte, L., Bode, I., Jansons, L., & Slūtiņš, O. (2025). Hydrogen as a pathway to heat production. Latvian Journal of Physics and Technical Sciences, 62(5), 109–125. doi: 10.2478/lpts-2025-0040.
- Bayat, A., Das, P. K., & Saha, S. C. (2025). Modeling porosity distribution strategies in pem water electrolyzers: A comparative analytical and numerical study. Mathematics, 13(13), 2077. doi: 10.3390/math13132077.
- Foniok, K., Drozdova, L., Prokop, L., Krupa, F., Kedron, P., & Blazek, V. (2025). Mechanisms and modelling of effects on the degradation processes of a proton exchange membrane (PEM) fuel cell: A comprehensive review. Energies, 18(8), 2117. doi: 10.3390/en18082117.
- Ul Hassan, N., Tunaboylu, B., & Soydan, A. M. (2019). A competitive design and material consideration for fabrication of polymer electrolyte membrane fuel cell bipolar plates. Designs, 3(1), 13. doi: 10.3390/designs3010013.
- Jayakumar, A., Singamneni, S., Ramos, M., Al-Jumaily, A. M., & Pethaiah, S. S. (2017). Manufacturing the gas diffusion layer for PEM fuel cell using a novel 3D printing technique and critical assessment of the challenges encountered. Materials, 10(7), 796. doi: 10.3390/ma10070796.
- Choi, S., Jang, I., & Lee, S. (2025). Advanced strategies for mitigating catalyst poisoning in low and high temperature proton exchange membrane fuel cells: Recent progress and perspectives. Crystals, 15(2), 129. doi: 10.3390/cryst15020129.
- Xie, M., Chu, T., Wang, T., Wan, K., Yang, D., Li, B., … & Zhang, C. (2021). Preparation, performance and challenges of catalyst layer for proton exchange membrane fuel cell. Membranes, 11(11), 879. doi: 10.3390/membranes11110879.
- Liu, Q., Liu, H., Zhang, W., Xu, Q., & Su, H. (2025). Advanced electrocatalyst supports for high-temperature proton exchange membrane fuel cells: A comprehensive review of materials, degradation mechanisms, and performance metrics. Catalysts, 15(9), 871. doi: 10.3390/catal15090871.
- Avram, D. N., Davidescu, C. M., Dan, M. L., Mirza-Rosca, J. C., Hulka, I., Pascu, A., & Stanciu, E. M. (2022). Electrochemical evaluation of protective coatings with Ti additions on mild steel substrate with potential application for PEM fuel cells. Materials, 15(15), 5364. doi: 10.3390/ma15155364.
- Chidziva, S., Zide, D., Bambo, J. J., Sinto, A., Pasupathi, S., & Bladergroen, B. J. (2024). Synthesis and electrochemical characterization of Ru-modified iridium oxide catalysts for PEM electrolysis. Applied Chem, 4(4), 353-366. doi: 10.3390/appliedchem4040022.
- Villemur, J., Romero, C., Crego, J. M., & Gordo, E. (2024). Fabrication and coating of porous Ti6Al4V structures for application in PEM fuel cell and electrolyzer technologies. Materials, 17(24), 6253. doi: 10.3390/ma17246253.
- Naco Tech. (n.d.). Empowering Green Tech with Nano-coatings. Available at: https://www.naco.tech/
- Erre Due. (n.d.). Sirio Hydrogen Generators. Available at: https://www.erredueEgas.it/en/products/sirio-hydrogen-generators/