References
- Larsen, I. L., & Thorstensen, R. T. (2020). The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: A review. Construction and Building Materials, 256, 119459. doi: 10.1016/j.conbuildmat.2020.119459.
- Chin, S. C., Shaaban, I. G., Rizzuto, J. P., Khan, S. U., Mohamed, D., Roslan, N. I. M., & Aziz, A. A. (2024). Predictive models for mechanical properties of hybrid fibres reinforced concrete containing bamboo and basalt fibres. Structures, 61, 106093. doi: 10.1016/j.istruc.2024.106093.
- Chetia, P., Samanta, S., & Singh, T. J. (2018). Parametric optimization in drilling of Bamboo/Basalt hybrid composite. Materials Today: Proceedings, 5 (2, Part 1), 5544–5552. doi: 10.1016/j.matpr.2017.12.145.
- Kannathasan, K. R., Grigorjevs, N., & Krasnikovs, A. (2025). Mechanics of composite fiber pull-out from concrete with fly ash using the DCB test. Vibroengineering Procedia, 58, 185–191. doi: 10.21595/vp.2024.24659.
- Kannathasan, K. R., Jacob, S., Michaelraj, M., Gjerlow, E., Novakova, I., & Vaisnoras, M. (2024). Hybrid fiber composite material with OSA mechanical load-bearing capacity after thermal heating. Engineering for Rural Development, 901–907. doi: 10.22616/ERDev.2024.23.TF179.
- Nováková, I., Jhatial, A. A., Kekez, S., Gjerløw, E., Gulik, V., Kannathasan, K. R., … & Krasnikovs, A. (2024). Investigating the Influence of Oil Shale Ash and Basalt Composite Fibres on the Interfacial Transition Zone in Concrete. Buildings, 14 (7), 1952. doi: 10.3390/buildings14071952.
- Gagg, C. R. (2014). Cement and concrete as an engineering material: An historic appraisal and case study analysis. Engineering Failure Analysis, 40, 114–140. doi: 10.1016/j.engfailanal.2014.02.004.
- Aïtcin, P.-C. & Lessard, J.-M. (2019). 8 - The composition and design of high-strength concrete and ultrahigh-strength concrete. Developments in the Formulation and Reinforcement of Concrete (Second Edition), 171–192. doi: 10.1016/B978-0-08-102616-8.00008-3.
- Chahar, A. S. & Pal, P. (2022). Study on various properties of reinforced concrete – A review. Materials Today: Proceedings, 65, 597–602. doi: 10.1016/j.matpr.2022.03.193.
- Anas, M., Khan, M., Bilal, H., Jadoon, S., & Khan, M. N. (2022). Fiber reinforced concrete: A review. Engineering Proceedings, 22 (1), 3. doi: 10.3390/engproc2022022003.
- Sanchaniya, J. V., Rana, V., & Vejanand, S. R. (2024). Optimisation of electrospinning parameters for high-strength oriented PAN nanofibre mats. Latvian Journal of Physics and Technical Sciences, 61 (5), 90–100. doi: 10.2478/lpts-2024-0038.
- Sanchaniya, J. V. (2024). Comparative analysis of thermal characteristics: Virgin polyacrylonitrile (PAN) versus electrospun PAN nanofibre mats. Latvian Journal of Physics and Technical Sciences, 61 (4), 98–105. doi: 10.2478/lpts-2024-0031.
- El-Nemr, A., Ahmed, E. A., Barris, C., Joyklad, P., Hussain, Q., & Benmokrane, B. (2023). Bond performance of fiber reinforced polymer bars in normal- and high-strength concrete. Construction and Building Materials, 393, 131957. doi: 10.1016/j.conbuildmat.2023.131957.
- Mahltig, B. (2018). Chapter 12 - cellulosic-based composite fibers. The Textile Institute Book Series, 277–301. Woodhead Publishing. doi: 10.1016/B978-0-08-102228-3.00013-X.
- Rengasamy Kannathasan, K., Krasnikovs, A., Macanovskis, A., & Novakova, I. (2024). Mechanical behavior of composite basalt short fiber for concrete structure reinforcement. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference, 3 SE-Engineering Sciences and Production Technologies, 248–252. doi: 10.17770/etr2024vol3.8157.
- Summerscales, J., Dissanayake, N. P. J., Virk, A. S., & Hall, W. (2010). A review of bast fibres and their composites. Part 1 – Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 41 (10), 1329–1335. doi: 10.1016/j.compositesa.2010.06.001.
- Selcuk, S., Ahmetoglu, U., & Gokce, E. C. (2023). Basalt Fiber Reinforced Polymer Composites (BFRP) other than rebars: A review. Materials Today Communications, 37, 107359. doi: 10.1016/j.mtcomm.2023.107359.
- Wu, G., Ren, Y., Du, J., Wang, H., & Zhang, X. (2023). Mechanical properties and failure mechanism analysis of basalt-glass fibers hybrid FRP composite bars. Case Studies in Construction Materials, 19, e02391. doi: 10.1016/j.cscm.2023.e02391.
- Kessler, E., Gadow, R., & Straub, J. (2016). Basalt, glass and carbon fibers and their fiber reinforced polymer composites under thermal and mechanical load. AIMS Materials Science, 3 (4), 1561–1576. doi: 10.3934/matersci.2016.4.1561.
- Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98–112. doi: 10.1016/j.compositesa.2015.08.038.
- Fink, J. K. (2013). Unsaturated polyester resins (Chapter 1). In Reactive Polymers: Fundamentals and Applications, (pp. 1–48). doi: 10.1016/B978-1-4557-3149-7.00001-2.
- Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1–25. doi: 10.1016/j.compositesa.2015.06.007.
- Kannathasan, K. R., Macanovskis, A., Ralla, R., & Gjerlow, E. (2024). Behavior of short fiber composite materials in variation of thermal and mechanical loading. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference, 3 SE-Engineering Sciences and Production Technologies, 242–247. doi:10.17770/etr2024vol3.8151.
- Sanchaniya, J. V., Lasenko, I., Vijayan, V., Smogor, H., Gobins, V., Kobeissi, A., & Goljandin, D. (2024). A novel method to enhance the mechanical properties of polyacrylonitrile nanofiber mats: An experimental and numerical investigation. Polymers, 16 (7), 992. doi: 10.3390/polym16070992.
- Sanchaniya, J. V. & Moothedath, G. (2025). Deformation behaviour of oriented electrospun PAN nanofiber mats. Latvian Journal of Physics and Technical Sciences, 62, 60–66. doi: 10.2478/lpts-2025-0013.
- Reinhardt, H. W., & Oliver Mielich. (2012). Effects of mechanical properties of ASR damaged concrete on structural design. In A. M. Brandt, J. Olek, M. A. Glinicki, & C. K. Y. Leung (eds.), Brittle Matrix Composites 10 (pp. 1–9). doi: 10.1533/9780857099891.1.
- Hussain, I., Ali, B., Akhtar, T., Jameel, M. S., & Raza, S. S. (2020). Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene). Case Studies in Construction Materials, 13, e00429. doi: 10.1016/j.cscm.2020.e00429.
- Sanchaniya, J. V., Lasenko, I., Gobins, V., & Kobeissi, A. (2024). A finite element method for determining the mechanical properties of electrospun nanofibrous mats. Polymers (Basel), 16 (6), 852. doi: 10.3390/polym16060852.
- Sangi, R., & Bollapragada, S. S. (2024). A Comparative study: Impact of fibers on the interfacial shear strength of geopolymer concrete. Slovak Journal of Civil Engineering, 32 (4), 60–67. doi: 10.2478/sjce-2024-0026.
- Çolak, A. (2001). Physical, mechanical, and durability properties of gypsum–Portland cement–natural pozzolan blends. Canadian Journal of Civil Engineering, 28 (3), 375–382. doi: 10.1139/l00-123.
- Chen, H., Sun, Y., & Deng, M. (2025). Research on the reinforcement design of concrete deep beams with openings based on the strut-and-tie model. Buildings, 15 (8), 1382. doi: 10.3390/buildings15081382.
- Hanif, A. & Usman, M. (2022). Fly ash cenosphere: Characterization, processing, and properties. In K. K. Kar (ed.), Handbook of Fly Ash (pp. 57–75). doi: 10.1016/B978-0-12-817686-3.00018-9.
- Alterary, S. S. & Marei, N. H. (2021). Fly ash properties, characterization, and applications: A review. Journal of King Saud University – Science, 33(6), 101536. doi: 10.1016/j.jksus.2021.101536.