Have a personal or library account? Click to login
A Short Review of Turquoise Hydrogen Production via Methane Pyrolysis Over Catalytic Systems Cover

A Short Review of Turquoise Hydrogen Production via Methane Pyrolysis Over Catalytic Systems

By: R. K. Sika,  A. Knoks and  L. Grinberga  
Open Access
|Jan 2026

References

  1. Moghaddam, A. L., Hejazi, S., Fattahi, M., Kibria, M. G., Thomson, M. J., AlEisa, R., & Khan, M. A. (2025). Methane pyrolysis for hydrogen production: Navigating the path to a net zero future. Energy & Environmental Science, 18, 2747–2790. doi: 10.1039/d4ee06191h.
  2. Afanasev, P., Askarova, A., Alekhina, T., Popov, E., Markovic, S., Mukhametdinova, A., Cheremisin, A., & Mukhina, E. (2024). An overview of hydrogen production methods: Focus on hydrocarbon feedstock. International Journal of Hydrogen Energy, 78, 805–828. doi: 10.1016/j.ijhydene.2024.06.369.
  3. Tabrizi, M. K., Vitasari, C. R., Bonalumi, D., & Campanari, S. (2026). Blue hydrogen can be low-carbon: A techno-economic-environmental analysis. Energy Conversion and Management, 348, 120608. doi: 10.1016/j.enconman.2025.120608.
  4. Koshi, M., Uehara, T., & Asahara, M. (2024). Problems in the reaction mechanism of methane pyrolysis for hydrogen production. International Journal of Hydrogen Energy, 72. 850–860. doi: 10.1016/j.ijhydene.2024.05.305.
  5. Sánchez-Bastardo, N., Schlögl, R., & Ruland, H. (2021). Methane pyrolysis for zero-emission hydrogen production: A potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy. Industrial & Engineering Chemistry Research, 60(32), 11855–11881. doi: 10.1021/acs.iecr.1c01679.
  6. Cho, H. H., Strezov, V., & Evans, T. J. (2022). Environmental impact assessment of hydrogen production via steam methane reforming based on emissions data. Energy Reports, 8, 13585–13595. doi: 10.1016/j.egyr.2022.10.053.
  7. Galtsov-Tsientsiala, M. S., Dudoladov, A. O., Grigorenko, A. V., & Vlaskin, M. S. (2023). Study of soot deposits during continuous methane pyrolysis in a corundum tube. Applied Sciences, 13(19), 10817. doi: 10.3390/app131910817.
  8. Zein, S. H. S., Mohamed, A. R., & Sai, P. S. T. (2004). Kinetic studies on catalytic decomposition of methane to hydrogen and carbon over Ni/TiO2 catalyst. Industrial & Engineering Chemistry Research, 43(16), 4864–4870. doi: 10.1021/ie034208f.
  9. Busillo, E., Damizia, M., De Filippis, P., & de Caprariis, B. (2024). Methane pyrolysis in molten media: The interplay of physical properties and catalytic activity on carbon and hydrogen production. Journal of Analytical and Applied Pyrolysis, 176, 106752. doi: 10.1016/j.jaap.2024.106752.
  10. Chen, Q., & Lua, A. C. (202). Kinetic reaction and deactivation studies on thermocatalytic decomposition of methane by electroless nickel plating catalyst. Chemical Engineering Journal, 389, 124366. doi: 10.1016/j.cej.2020.124366.
  11. Lee, M. B., Yang, Q. Y., Tang, S. L., & Ceyer, S. T. (1985). Activated dissociative chemisorption of CH4 on Ni(111): Observation of a methyl radical and implication for the pressure gap in catalysis. The Journal of Chemical Physics, 85(3), 1693–1694. doi: 10.1063/1.451211.
  12. Palmer, C., Tarazkar, M., Kristoffersen, H. H., Gelinas, J., Gordon, M. J., McFarland, E. W., & Metiu, H. (2019). Methane pyrolysis with a molten Cu–Bi alloy catalyst. ACS Catalysis, 9(9), 8337–8345. doi: 10.1021/acscatal.9b01833.
  13. Upham, D. C., Agarwal, V., Khechfe, A., Snodgrass, Z. R., Gordon, M. J., Metiu, H., & McFarland, E. W. (2017). Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science, 358(6365), 917–921. doi: 10.1126/science.aao5023.
  14. Li, J., Li, P., Li, J., Tian, Z., & Yu, F. (2019). Highly-dispersed Ni-NiO nanoparticles anchored on an SiO2 support for an enhanced CO methanation performance. Catalysts, 9(6), 506. doi: 10.3390/catal9060506.
  15. Tran, K. Y., Heinrichs, B., Colomer, J. F., Pirard, J. P., & Lambert, S. (2007). Carbon nanotubes synthesis by the ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co, and Fe-Co/Al2O3 sol-gel catalysts. Applied Catalysis A: General, 318, 63–69. doi: 10.1016/j.apcata.2006.10.042.
  16. Liu, W. W., Aziz, A., Chai, S.-P., Mohamed, A. R., & Hashim, U. (2013). Synthesis of single-walled carbon nanotubes: Effects of active metals, catalyst supports, and metal loading percentage. Journal of Nanomaterials, 2013, 592464. doi: 10.1155/2013/592464.
  17. Kristiani, A., Takeishi, K., Jenie, S. N. A., & Petrus, H. T. B. M. (2024). Bimetallic Ni-Fe supported by gadolinium doped ceria (GDC) catalyst for CO2 methanation. Bulletin of Chemical Reaction Engineering & Catalysis, 19(1), 99–107. doi: 10.9767/bcrec.20108.
  18. Andrade, M. L., Almeida, L., do Carmo Rangel, M., Pompeo, F., & Nichio, N. (2014). Ni-catalysts supported on Gd-doped ceria for solid oxide fuel cells in methane steam reforming. Chemical Engineering & Technology, 37(2), 343–348. doi: 10.1002/ceat.201300398.
  19. Wu, Y., Pei, C., Tian, H., Liu, T., Zhang, X., Chen, S., Xiao, Q., Wang, X., & Gong, J. (2021). Role of Fe species of Ni-based catalysts for efficient low-temperature ethanol steam reforming. JACS Au, 1(9), 1459–1470. doi: 10.1021/jacsau.1c00217.
  20. Alreshaidan, S. B., Al-Fatesh, A., Lanre, M. S., Alanazi, Y. M., Ibrahim, A. A., Fakeeha, A. H., … & Bagabas, A. (2023). Effect of adding gadolinium oxide promoter on nickel catalyst over yttrium-zirconium oxide support for dry reforming of methane. Materials, 16(3), 1158. doi: 10.3390/ma16031158.
  21. Gunarayu, M. R., Abdul Patah, M. F., & Ashri Wan Daud, W. M. (2025). Advancements in methane pyrolysis: A comprehensive review of parameters and molten catalysts in bubble column reactors. Renewable and Sustainable Energy Reviews, 210, 115197. doi: 10.1016/j.rser.2024.115197.
  22. Das, J., Kleiman, A., Rehman, A. U., Verma, R. P., & Young, M. H. (2024). The cobalt supply chain and environmental life cycle impacts of lithium-ion battery energy storage systems. Sustainability, 16(5), 1910. doi: 10.3390/su16051910.
  23. Vlaskin, M. S., Grigorenko, A. V., Gromov, A. A., Kumar, V., Dudoladov, A. O., Slavkina, O. V., & Darishchev, V. I. (2022). Methane pyrolysis on sponge iron powder for sustainable hydrogen production. Results in Engineering, 15, 100598. doi: 10.1016/j.rineng.2022.100598.
  24. Vedele, P., Sartoretti, E., Torretti, G., Novara, C., Salomone, F., Giorgis, F., Antonini, M., & Bensaid, S. (2025). Thermocatalytic methane pyrolysis over iron-based catalysts for turquoise hydrogen production: Activity and kinetic studies. Chemical Engineering Journal, 514, 163392. doi: 10.1016/j.cej.2025.163392.
  25. Pathak, S., & McFarland, E. (2024). Iron catalyzed methane pyrolysis in a stratified fluidized bed reactor. Energy & Fuels, 38(14), 12576–12585. doi: 10.1021/acs.energyfuels.4c01484.
  26. Fakeeha, A. H., Ibrahim, A. A., Khan, W. U., Seshan, K., Al Otaibi, R. L., & Al-Fatesh, A. S. (2018). Hydrogen production via catalytic methane decomposition over alumina supported iron catalyst. Arabian Journal of Chemistry, 11(3), 405–414. doi: 10.1016/j.arabjc.2016.06.012.
  27. Ellison, C. R., Lauterbach, J. C., & Smith, M. W. (2024). Activated carbon supported Fe, Ni, and Ni-Fe bimetallic catalysts for COx-free H2 production by microwave methane pyrolysis. International Journal of Hydrogen Energy, 55(3), 1062–1070. doi: 10.1016/j.ijhydene.2023.11.150
  28. Kang, H., Kang, H. J., Ko, H., Lee, Y. H., & Choi, S. (2024). Study on nickel-based catalysts for methane pyrolysis using thermal plasma. Applied Science and Convergence Technology, 33(5), 135–139. doi: 10.5757/ASCT.2024.33.5.135.
  29. Saconsint, S., Sae-Tang, N., Srifa, A., Koo-Amornpattana, W., Assabumrungrat, S., Fukuhara, C., & Ratchahat, S. (2022). Development of high-performance nickel-based catalysts for production of hydrogen and carbon nanotubes from biogas. Scientific Reports, 12(1), 15195. doi: 10.1038/s41598-022-19638-y.
  30. Horváth, A., Németh, M. L., Beck, A., Sáfrán, G., Horváth, Z. E., Rigó, I., May, Z., & Korányi, T. I. (2024). Methane pyrolysis on NiMo/MgO catalysts: The significance of equimolar NiMo alloy resisting nanosize segregation during the reaction. Applied Catalysis A: General, 676, 119651. doi: 10.1016/j.apcata.2024.119651.
  31. Avdeeva, L. B., Kochubey, D. I., & Shaikhutdinov, S. K. (1999). Cobalt catalysts of methane decomposition: Accumulation of the filamentous carbon. Applied Catalysis A: General, 177(1), 43–51. doi: https://doi.org/10.1016/S0926-860X(98)00250-6.
  32. Gamal, A., Eid, K., El-Naas, M. H., Kumar, D., & Kumar, A. (2021). Catalytic methane decomposition to carbon nanostructures and COx-free hydrogen: A mini-review. Nanomaterials, 11(5), 1226. doi: 10.3390/nano11051226.
  33. Hamdani, I. R., Ahmad, A., Chulliyil, H. M., Srinivasakannan, C., Shoaibi, A. A., & Hossain, M. M. (2023). Thermocatalytic decomposition of methane: A review on carbon-based catalysts. ACS Omega, 8(30), 28014–28037. doi: 10.1021/acsomega.3c01936.
  34. Sánchez-Bastardo, N., Schlögl, R., & Ruland, H. (2020). Methane pyrolysis for CO2-free H2 production: A green process to overcome renewable energies unsteadiness. Chemie-Ingenieur-Technik, 92(10), 1596–1609. doi: 10.1002/cite.202000029.
  35. Luo, H., Qiao, Y., Ning, Z., Bo, C., & Hu, J. (2020). Effect of thermal extraction on coal-based activated carbon for methane decomposition to hydrogen. ACS Omega, 5(5), 2465–2472. doi: 10.1021/acsomega.9b04044.
  36. Truong-Phuoc, L., Essyed, A., Pham, X. H., Romero, T., Dath, J. P., Nhut, J. M., Brazier, A., Vidal, L., Nguyen-Dinh, L., & Pham-Huu, C. (2024). Catalytic methane decomposition process on carbon-based catalyst under contactless induction heating. Chemical Synthesis, 4(4), 56. doi: 10.20517/cs.2024.50.
  37. Cepeda, F., Di Liddo, L., & Thomson, M. J. (2024). Enhancing hydrogen production: Modelling the role of activated carbon catalyst in methane pyrolysis. International Journal of Hydrogen Energy, 83, 410–420. doi: 10.1016/j.ijhydene.2024.08.056.
  38. Luna-Murillo, B., Pala, M., Paioni, A. L., Baldus, M., Ronsse, F., Prins, W., Bruijnincx, P. C. A., & Weckhuysen, B. M. (2021). Catalytic fast pyrolysis of biomass: Catalyst characterization reveals the feed-dependent deactivation of a technical ZSM-5-based catalyst. ACS Sustainable Chemistry & Engineering, 9(1), 291–304. doi: 10.1021/acssuschemeng.0c07153.
  39. Anekwe, I. M. S., & Isa, Y. M. (2025). Unlocking catalytic longevity: A critical review of catalyst deactivation pathways and regeneration technologies. Energy Advances, 4(9), 1075–1113. doi: 10.1039/d5ya00015g.
  40. Vogt, E. T. C., Fu, D., & Weckhuysen, B. M. (2023). Carbon deposit analysis in catalyst deactivation, regeneration, and rejuvenation. Angewandte Chemie International Edition, 62(29), e202300319. doi: 10.1002/anie.202300319.
  41. Mirkarimi, S. M. R., Bensaid, S., Negro, V., & Chiaramonti, D. (2023). Review of methane cracking over carbon-based catalyst for energy and fuels. Renewable and Sustainable Energy Reviews, 187, 113747. doi: 10.1016/j.rser.2023.113747.
  42. Zhou, N., Zhao, D., Su, Q., Li, Q., Zha, W., & Feng, S. (2024). Catalytic performance of modified carbon black on methane decomposition for hydrogen production. RSC Advances, 14(22), 15656–15663. doi: 10.1039/d4ra01486c.
  43. Kundu, R., Ramasubramanian, V., Neeli, S. T., & Ramsurn, H. (2021). Catalytic pyrolysis of methane to hydrogen over carbon (from cellulose biochar) encapsulated iron nanoparticles. Energy & Fuels, 35(16), 13523–13533. doi: 10.1021/acs.energyfuels.1c01620.
  44. Ellison, C. R., Lauterbach, J. C., & Smith, M. W. (2024). Activated carbon supported Ni, Fe, and bimetallic NiFe catalysts for COx-free H2 production by microwave methane pyrolysis. International Journal of Hydrogen Energy, 55, 1062–1070. doi: 10.1016/J.IJHYDENE.2023.11.150.
  45. Jiang, C., Wang, I.-W., Bai, X., Balyan, S., Robinson, B., Hu, J., … & Skoptsov, G. (2022). Methane catalytic pyrolysis by microwave and thermal heating over carbon nanotube-supported catalysts: Productivity, kinetics, and energy efficiency. Industrial & Engineering Chemistry Research, 61(15), 5080–5092. doi: 10.1021/acs.iecr.1c05082.
  46. Christiansen, T., Robinson, B., Caiola, A., Jiang, C., & Hu, J. (2022). Improved efficiency of the microwave-enhanced catalytic pyrolysis of methane through supplemental thermal heating. Industrial & Engineering Chemistry Research, 61(43), 15832–15841. doi: 10.1021/acs.iecr.2c02093.
  47. Kushch, S. D., Muradyan, V. E., Fursikov, P. V., Knerelman, E. I., Kuznetsov, V. L., & Butenko, Y. V. (2001). Methane pyrolysis over carbon catalysts. Eurasian Chemico-Technological Journal, 3(2), 67–72. doi: 10.18321/ectj548.
  48. Boekfa, B., Treesukol, P., Injongkol, Y., Maihom, T., Maitarad, P., & Limtrakul, J. (2018). The activation of methane on Ru, Rh, and Pd decorated carbon nanotube and boron nitride nanotube: A DFT study. Catalysts, 8(5), 190. doi: 10.3390/catal8050190.
  49. Schünemann, S., Schmidt, J., Rinke, G., Müller, D., & Schönherr, H. (2011). Catalyst poisoning by amorphous carbon during carbon nanotube growth: Fact or fiction? ACS Nano, 5(11), 8928–8934. doi: 10.1021/nn2031066.
  50. Serban, M., Lewis, M. A., Marshall, C. L., & Doctor, R. D. (2003). Hydrogen production by direct contact pyrolysis of natural gas. Energy & Fuels, 17(3), 705–713. doi: 10.1021/ef020271q.
  51. Dadsetan, M., Aydin, E., Vu, M. T., White, T., Snodgrass, Z. R., & Mcfarland, E. W. (2023). Characterization of carbon products from microwave-driven methane pyrolysis. Carbon Trends, 12, 100277. doi: 10.1016/J.CARTRE.2023.100277.
  52. Abuseada, M., & Fisher, T. S. (2023). Continuous solar-thermal methane pyrolysis for hydrogen and graphite production by roll-to-roll processing. Applied Energy, 352, 121872. doi: 10.1016/J.APENERGY.2023.121872.
  53. Daghagheleh, O., Schenk, J., Zheng, H., Zarl, M. A., Farkas, M., Ernst, D., … & Obenaus-Emler, R. (2024). Optimizing methane plasma pyrolysis for instant hydrogen and high-quality carbon production. International Journal of Hydrogen Energy, 79, 1406–1417. doi: 10.1016/J.IJHYDENE.2024.07.129.
  54. Angikath, F., Abdulrahman, F., Yousry, A., Das, R., Saxena, S., Behar, O., … & Sarathy, S. M. (2024). Technoeconomic assessment of hydrogen production from natural gas pyrolysis in molten bubble column reactors. International Journal of Hydrogen Energy, 49, 246–262. doi: 10.1016/J.IJHYDENE.2023.07.308.
  55. Kim, H. S. (2025). Techno-economic, exergetic, and life cycle assessment of clean hydrogen production methods using renewable energy: A comparative study of e-methane pyrolysis, e-steam methane reforming, and alkaline water electrolysis. International Journal of Hydrogen Energy, 100, 635–645. doi: 10.1016/J.IJHYDENE.2024.12.361.
  56. Sun, E., Zhai, S., Kim, D., Gigantino, M., Haribal, V., Dewey, O. S., … & Majumdar, A. (2023). A semi-continuous process for co-production of CO2-free hydrogen and carbon nanotubes via methane pyrolysis. Cell Reports Physical Science, 4(4), 101338. doi: 10.1016/j.xcrp.2023.101338.
  57. Peden, J., Ryley, J., Terrones, J., Smail, F., Elliott, J. A., Windle, A., & Boies, A. M. (2025). Production of hydrogen and carbon nanotubes from methane using a multi-pass floating catalyst chemical vapour deposition reactor with process gas recycling. Nature Energy. doi: 10.1038/s41560-025-01925-3.
  58. Giarnieri, I., Bobitan, A. D., Foderà, V., Gioria, E., Costley-Wood, L., Bertuzzi, A., … & Benito, P. (2025). Methane splitting to hydrogen and base growth carbon nanotubes over Fe-based catalysts. Applied Catalysis B: Environmental, 379, 125707. doi: 10.1016/j.apcatb.2025.125707.
DOI: https://doi.org/10.2478/lpts-2026-0001 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 3 - 15
Published on: Jan 26, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2026 R. K. Sika, A. Knoks, L. Grinberga, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.