References
- Pühringer, M., Paulik, C.H., & Bretterbauer, K. (2023). Synthesis and Characterization of Polyacrylamide-Based Biomimetic Underwater Adhesives. Monatshefte für Chemie - Chemical Monthly, 154, 503–513. https://doi.org/10.1007/s00706-023-03057-4
- Inogamov, S. Y., Eshmatov, A., Pulatova, F. A., & Mukhamedov, G. I. (2024). Structure and Properties of Interpolymer Complexes based on Sodium Carboxymethylcellulose Polysaccharide and Carbopol. East European Journal of Physics, 2, 416–421. https://doi.org/10.26565/2312-4334-2024-2-54
- Su, Z., Li, Ch., Jiang, G., Li, J., Lu, H., & Guo, F. (2022). Rheology and Thixotropy of Cement Pastes Containing Polyacrylamide. Hindawi, Geofluids. https://doi.org/10.1155/2022/1029984
- Inagamov, S. Y., Asrorov, U. A., & Xujanov, E. B. (2023). Structure and Physico-Mechanical Properties of Polyelectrolyte Complexes Based on Sodium Carboxymethylcellulose Polysaccharide and Polyacrylamide. East European Journal of Physics, 4, 258–266. https://doi.org/10.26565/2312-4334-2023-4-32
- Murata, H. (2012). Rheology – Theory and Application to Biomaterials. Polymerization. http://dx.doi.org/10.5772/48393
- Inagamov, S. Y., Mukhamedzhanova, M. Y., & Mukhamedov, G. I. (2008). Rheological Properties Of Polycomplex Gels of Carboxymethyl Cellulose with Urea-Formaldehyde Oligomers. Russian Journal of Applied Chemistry, 81 (2), 310–315. https://doi.org/10.1007/s11167-008-2029-4
- Münstedt, H. (2021). Rheological Measurements and Structural Analysis of Polymeric Materials. Polymers, 13, 1123. https://doi.org/10.3390/polym13071123
- Ramli, H., Zainal, N. F. A., Hess, M., & Chan, Ch. H. (2022). Basic Principle and Good Practices of Rheology for Polymers for Teachers and Beginners. Chemistry Teacher International, 4 (4), 307–326. https://doi.org/10.1515/cti-2022-0010
- Masuelli, M. A. (2018). Intrinsic Viscosity Determination of High Molecular Weight Biopolymers by Different Plot Methods. Chia Gum Case. Journal of Polymer and Biopolymer Physics Chemistry, 6 (1), 13–25. https://doi.org/10.12691/jpbpc-6-1-2
- Sangroniz, L., Fernandez, M., & Santamaria, A. (2023). Polymers and Rheology: A Tale of Give and Take. Polymer, 271, 125811. https://doi.org/10.1016/j.polymer.2023.125811
- Jamoldinov, F. Z., Yusupaliyev, M. R., & Asrorov, A. U. (2024). Radiation Graft Copolymerization of Vinyl Fluoride to Cotton, Hydrocellulose Fiber and Fabric. East European Journal of Physics, 2, 422–430. https://doi.org/10.26565/2312-4334-2024-2-55
- Khakkulov, J. M., Kholmuminov, A. A., & Temirov, Z. S. (2021). Features of Electrochemical Reduction of Silk Fibroin in the Presence of Phosphate Tricalcium in the Form of Nanocating. Modern Physics Letters B, 5 (31), 2150476. https://doi.org/10.1142/S0217984921504765.
- Tursunov, M., Sabirov, K., Axtamov, T., Chariyev, M., Abdiyev, U., Yuldoshov, B., Khaliyarov, B., & Toshpulatov S. (2023). Capacity Utilization Factor (CUF) of the 70kW on-grid solar station in the dry climate of Termez. In: E3S Web of Conferences. 5th International Scientific Conference on Construction Mechanics. Hydraulics and Water Resources Engineering, CONMECHYDRO 2023. Tashkent, Uzbekistan. https://doi.org/10.1051/e3sconf/202340102059.
- Yen, H.-Y., & Yang, M.-H. (2003). The Ultrasonic Degradation of Polyacrylamide Solution. Polymer Testing, 22, 129–131. https://doi.org/10.1016/S0142-9418(02)00054-5
- Su, Z., Li, Ch., Jiang, G., Li, J., Lu, H., & Guo, F. (2022). Rheology and Thixotropy of Cement Pastes Containing Polyacrylamide. Hindawi, Geofluids. https://doi.org/10.1155/2022/1029984
- Nagasawa, K., Suzuki, T., Seto, R., Okada, M., & Yue, Y. (2019). Mixing Sauces: A Viscosity Blending Model for Shear Thinning Fluids. ACM Trans. Graph., 38 (4). https://doi.org/10.1145/3306346.3322947
- Khakkulov, J. M., Temirov, Z. S., Matyakubov, B. M., & Sultanov, A. P. (2024). Formation of Layered Nanofibric Materials and Composite Coatings. Modern Physics Letters B, 38 (22), 2450175. https://doi.org/10.1142/S0217984924501756
- Naya, S., Meneses, A., Tarrı´o-Saavedra, J., Artiaga, R., Lo´pez-Beceiro, J., & Gracia-Ferna´ndez, C. (2013). New Method for Estimating Shift Factors in Time–Temperature Superposition Models. J Therm Anal Calorim., 113, 453–460. https://doi.org/10.1007/s10973-013-3193-1
- Willams, M. L., Landel, R. F., & Ferry, D. J. (1955). The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. Contribution from the Department of Chemistry, University of Wisconsin. https://doi.org/10.1021/ja01619a008