Have a personal or library account? Click to login
Comparison of Existing Methods for Purifying Gases from Ship Propulsion Engines Cover

Comparison of Existing Methods for Purifying Gases from Ship Propulsion Engines

Open Access
|Dec 2025

References

  1. Sinay Maritime Data Solution. (2023). How Much does the Shipping Industry Contribute to Global CO₂ Emissions? Available at: https://sinay.ai/en/how-much-does-the-shipping-industry-contribute-to-global-co2-emissions/
  2. Transport & Environment (T&E). (n.d.). Climate Impact of Shipping. Available at: https://www.transportenvironment.org/topics/ships/climate-impact-shipping
  3. Ship Technology. (n.d.). Guidelines and Goals: Reducing Shipping’s Emissions. Available at: https://www.ship-technology.com/features/guidelines-and-goals-reducing-shippings-emissions/
  4. European Commission. (n.d.). Reducing Emissions from the Shipping Sector. Available at: https://climate.ec.europa.eu/eu-action/transport-decarbonisation/reducing-emissions-shipping-sector_en
  5. Endres, S., Maes, F., Hopkins, F., Houghton, K., Martensson, E. M., Oeffner, J., … & Turner, D. (2018). A New Perspective at the Ship-Air-Sea Interface: The Environmental Impacts of Exhaust Gas Scrubber Discharge. Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00139
  6. Shaketange, O. (2024). Exhaust Scrubber Systems Onboard Vessels. Bachelor’s Thesis. Satakunta University of Applied Sciences. Available at: https://www.theseus.fi/bitstream/handle/10024/829529/Shaketange_Olga.pdf
  7. Theas Engineers. (n.d.). Right Scrubber for Your Facility: A Guide to Wet, Dry, and Semi-dry Scrubbers. Available at: https://theasengineers.com/choosing-the-right-scrubber
  8. Lee, I., Chang, T., Chang, C., Truong, V., & Ward, J. (2022). Comparison of Open-and Closed-Loop Operating Strategies for Exhaust Gas Scrubbing in Marine Applications. Journal of Engineering for the Maritime Environment, 237 (4). https://doi.org/10.1177/14750902221123845
  9. Carlson, A. (5 July 2024). Sweden Plans Ban on Scrubbers. Available at: https://shipandbunker.com/news/emea/451144-sweden-plans-ban-on-scrubbers
  10. Gao, F., & Toops, T. J. (2021). Selective Catalytic Reduction: From Basic Science to deNOx Applications. Catalysts, 11 (250). https://doi.org/10.3390/catal11020250
  11. Lu, X., Geng, P., & Chen, Y. (2020). NOₓ Emission Reduction Technology for Marine Engines Based on Tier III: A Review. Journal of Thermal Science, 29. https://doi.org/10.1007/s11630-020-1342-y
  12. Bayramoğlu, K., Yilmaz, S., & Nuran, M. (2024). Reduction of NOₓ Pollutants from Ship Engines Using High-Pressure Selective Catalytic Reduction Systems. Environmental Science and Pollution Research, 31, 1–13. https://doi.org/10.1007/s11356-024-33439-y
  13. Zhao, J., Zhang, X., Yang, F., Ai, Y., Chen, Y., & Pan, D. (2024). Strategy and Technical Progress of Recycling Spent Vanadium–Titanium-Based Selective Catalytic Reduction Catalysts. ACS Omega, 9 (6), 6036–6058. https://doi.org/10.1021/acsomega.3c07019
  14. Li, M., Liu, B., Wang, X., Yu, X., Zheng, S., Du, H., … & Zhang, Y. (2017). A Promising Approach to Recover a Spent SCR Catalyst: Deactivation by Arsenic and Alkaline Metals and Catalyst Regeneration. Chemical Engineering Journal, 342. https://doi.org/10.1016/j.cej.2017.12.132
  15. Zhao, T., Li, R., Zhang, Z., & Song, C. (2025). Current Status of Onboard Carbon Capture and Storage (OCCS): A Technical Assessment. Carbon Capture Science & Technology, 15. https://doi.org/10.1016/j.ccst.2025.100402
  16. Zanobetti, F., Pio, G., Bucelli, M., Miani, L., Jafarzadeh, S., & Cozzani, V. (2024). Onboard Carbon Capture for Fossil Fuel-Based Shipping: A Sustainability Assessment. Journal of Cleaner Production, 470. https://doi.org/10.1016/j.jclepro.2024.143343
  17. Xing, H. (2023). Onboard Carbon Capture and Storage (OCCS): Feasibility Analysis and Policy Measures. Master’s Thesis. World Maritime University. Available at: https://commons.wmu.se/all_dissertations/3336
  18. Madejski, P., Chmiel, K., Subramanian, N., & Kuś, T. (2022). Methods and Techniques for CO₂ Capture: Review of Potential Solutions and Applications. Energies, 15 (887). https://doi.org/10.3390/en15030887
  19. Zhao, T., Li, R., Zhang, Z., & Song, C. (2025). Current Status of Onboard Carbon Capture and Storage (OCCS) Systems: A Survey of Technical Assessment. Carbon Capture Science & Technology, 15. https://doi.org/10.1016/j.ccst.2025.100402
  20. Bortuzzo, V., Bertagna, S., Braidotti, L., & Cozzani, V. (2025). CO₂ Emissions Reduction in Shipping: Ca(OH)₂-Based Carbon Capture. Frontiers in Marine Science, 12. https://doi.org/10.3389/fmars.2025.1434342
  21. Pancione, E., Erto, A., Di Natale, F., Lancia, A., & Balsamo, M. (2024). A Comprehensive Review of Post-Combustion CO₂ Capture Technologies for Maritime Applications. Journal of CO₂ Utilization, 89. https://doi.org/10.1016/j.jcou.2024.102955
  22. Future Zone. (2024). Frachtschiff fängt seine eigenen CO₂-Emissionen ab. Available at: https://futurezone.at/digital-life/frachtschiff-co2-emissionen-abgase-container-seabound/402782878
  23. Van Duc Long, N., Lee, D. Y., Kwag, C., Lee, Y. M., Lee, S. W., Lewis, D., … & Lee, M. (2024). Removal of Marine NOₓ, SOₓ, and CO₂ from Flue Gas: Simulation and Experiment. Chemical Engineering Journal, 130558. https://wrap.warwick.ac.uk/id/eprint/188602
  24. Panomsuwan, G., Rujiravanit, R., Ueno, T., & Saito, N. (2016). Non-thermal Plasma Technology for Marine Diesel Engine Emission Control. Journal of the Korean Society of Marine Engineering, 40 (10), 929–934. https://doi.org/10.5916/jkosme.2016.40.10.929
  25. Brandenburg, R., Barankova, H., Bardos, L., Chmielewski, A. G., Dors, M., Grosch, H., … & Stamate, E. (2011). Plasma-based depollution of exhausts: Principles, state of the art and prospects. In: A. G. Chmielewski (Ed.), Monitoring, Control and Effects of Air Pollution (pp. 229–254). Technical University of Denmark. https://doi.org/10.5772/20351
  26. Mierczyński, P., Mierczynska-Vasilev, A., Szynkowska-Jóźwik, M. I., Ostrikov, K. (K.), & Vasilev, K. (2023). Plasma-Assisted Catalysis for CH₄ and CO₂ Conversion. Catalysis Communications, 180. https://doi.org/10.1016/j.catcom.2023.106709
  27. Mohamed, R. Y. A., Kumarachari, R. K., Bukke, S. P. N., Neerugatti, D., Mekasha, Y. T., & Bandarapalle, K. (2025). Plasma Catalysis for Sustainable Industry: Lab-scale Studies and Pathways to Upscaling. Discover Applied Sciences, 7, 271. https://doi.org/10.1007/s42452-025-06718-7
  28. Adnew, G. A., Meusinger, C., Bork, N., Gallus, M., Kyte, M., Rodins, V., … & Johnson, M. S. (2016). Gas-Phase Advanced Oxidation as an Integrated Air Pollution Control Technique. AIMS Environmental Science, 3 (1), 141–158. https://doi.org/10.3934/environsci.2016.1.141
  29. Litter, M. I., & Quici, N. (2010). Photochemical Advanced Oxidation Processes for Wastewater Treatment. Recent Patents on Engineering, 4 (3). https://doi.org/10.2174/187221210794578574
  30. Yang, J., Zhao, X., Wei, S., Wang, P., Yang, Y., Zou, B, … & Song, L. (2025). Innovative AOPs Based on Hydrodynamic Cavitation for Simultaneous Desulfurization and Denitration. Chemical Engineering Journal, 505. https://doi.org/10.1016/j.cej.2025.159254
  31. Johnson, M. S., Nilsson, E. J. K., Svensson, E. A., & Langer, S. (2014). Gas-Phase Advanced Oxidation for In Situ Pollution Control. Environmental Science & Technology, 48 (15), 8768–8776. https://doi.org/10.1021/es5012687
  32. Rayaroth, M. P., Aravindakumar, C. T., Shah, N. S., & Boczkaj, G. (2022). Advanced Oxidation Processes (AOPs) for Wastewater Treatment: Unexpected Nitration Side Reactions – A Serious Environmental Issue. Chemical Engineering Journal, 430 (Part 4). https://doi.org/10.1016/j.cej.2021.133002
  33. Dhamorikar, R. S., Lade, V. G., Kewalramani, P. V., & Bindwal, A. B. (2024). Review on Integrated Advanced Oxidation Processes for Water and Wastewater Treatment. Journal of Industrial and Engineering Chemistry, 138, 104–122. https://doi.org/10.1016/j.jiec.2024.04.037
  34. Mission Zero Technologies. (2024). Electrochemical Direct Air Capture: Lab Notes. Available at: https://www.missionzero.tech/lab-notes/electrochemical-direct-air-capture
  35. Wang, C., Jiang, K., Yu, H., Li, S., Zhao, Y., Zheng, Z., … & Li, K. (2025). Review of Electrochemical CO₂ Capture for Practical Applications. Next Materials, 8. https://doi.org/10.1016/j.nxmate.2025.100660
  36. Ghezel, H., Jolly, S., Patel, D., & Steen, W. (2017). Electrochemical Membrane Technology for CO₂ Capture. Energy Procedia, 108, 2–9. https://doi.org/10.1016/j.egypro.2016.12.183
  37. Sharifian, R., Vermaas, D., Digdaya, I., Xiang, C., & Vermaas, D. A. (2020). Electrochemical CO₂ Capture to Close the Carbon Cycle. Energy & Environmental Science, 14. https://doi.org/10.1039/d0ee03382k
  38. Oh, J., Anantharaman, R., Zahid, U., Lee, P., & Lim, Y. (2022). Process Design of Onboard Membrane Carbon Capture for LNG-Fueled Ships. Separation and Purification Technology, 282. https://doi.org/10.1016/j.seppur.2021.120052
  39. SEPURAN® by Evonik. (n.d.). Efficient Gas Separation Using Hollow-Fiber Membranes. Available at: https://www.membrane-separation.com
  40. PubChem. (n.d.). Patent Summary for US-9291083-B2: Membrane-Based Exhaust Gas Scrubbing System. Available at: https://pubchem.ncbi.nlm.nih.gov/patent/US-9291083-B2
  41. Chuah, C. Y. (2022). Membranes for Gas Separation and Purification. Membranes, 12, 622. https://doi.org/10.3390/membranes12060622
  42. Balachandran, W., Flnst, P., Manivannan, N., Beleca, R., & Abbod, M. (2015). Reduction of NOₓ and PM in Marine Diesel Engine Exhaust Using Microwave Plasma. Journal of Physics: Conference Series, 646, 012053. https://doi.org/10.1088/1742-6596/646/1/012053
  43. Abbod, M., Beleca, R., Peirce, D., Ganippa, L., Manivannan, N., & Balachandran, W. (2016). Power Controlled Microwave Reactor for the Removal of NOx and SOx from the Exhaust of Marine Diesel Engines. In M. Andre & Z. Samaras (Eds.), Energy and Environment (pp. 373–284). https://doi.org/10.1002/9781119307761.ch24
  44. Savu, S. V., Marin, R. C., David, A., Olei, A. B., Dimitru, I., Tarnita, D., … & Savu, I. D. (2022). Reducing NOₓ Emissions via Microwave Heating in Inland Waterway Vessels. Sustainability, 14 (7), 4156. https://doi.org/10.3390/su14074156
  45. D’Isa, F. A., Carbone, E. A. D., Hecimovic, A., & Fantz, U. (2020). Performance Analysis of a 2.45 GHz Microwave Plasma Torch for CO₂ Decomposition. Plasma Sources Science and Technology, 29, 105009. https://doi.org/10.1088/1361-6595/abaa84
  46. Kawasaki Heavy Industries. (2020). Kawasaki Completes Installation of Liquefied Hydrogen Storage Tank for Marine Transport. Available at: https://global.kawasaki.com/en/corp/newsroom/news/detail/?f=20200309_3090\
  47. Fuel Cell and Hydrogen Energy Association. (2020). Road Map to a U.S. Hydrogen Economy. Available at: https://static1.squarespace.com/static/53ab1feee4b0bef0179a1563/t/5e7ca9d6c8fb3629d399fe0c/1585228263363/Road+Map+to+a+US+Hydrogen+Economy+Full+Report.pdf
  48. Gulli, C., Heid, B., Noffsinger, J., Waardenburg, M., & Wilthaner, M. (2024). Global Energy Perspective 2023: Hydrogen Outlook. McKinsey & Company. Available at: https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2023-hydrogen-outlook
DOI: https://doi.org/10.2478/lpts-2025-0046 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 103 - 114
Published on: Dec 6, 2025
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 D. Uspenskis, P. Bronowski, A. Semeniscevs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.