References
- Sinay Maritime Data Solution. (2023). How Much does the Shipping Industry Contribute to Global CO₂ Emissions? Available at: https://sinay.ai/en/how-much-does-the-shipping-industry-contribute-to-global-co2-emissions/
- Transport & Environment (T&E). (n.d.). Climate Impact of Shipping. Available at: https://www.transportenvironment.org/topics/ships/climate-impact-shipping
- Ship Technology. (n.d.). Guidelines and Goals: Reducing Shipping’s Emissions. Available at: https://www.ship-technology.com/features/guidelines-and-goals-reducing-shippings-emissions/
- European Commission. (n.d.). Reducing Emissions from the Shipping Sector. Available at: https://climate.ec.europa.eu/eu-action/transport-decarbonisation/reducing-emissions-shipping-sector_en
- Endres, S., Maes, F., Hopkins, F., Houghton, K., Martensson, E. M., Oeffner, J., … & Turner, D. (2018). A New Perspective at the Ship-Air-Sea Interface: The Environmental Impacts of Exhaust Gas Scrubber Discharge. Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00139
- Shaketange, O. (2024). Exhaust Scrubber Systems Onboard Vessels. Bachelor’s Thesis. Satakunta University of Applied Sciences. Available at: https://www.theseus.fi/bitstream/handle/10024/829529/Shaketange_Olga.pdf
- Theas Engineers. (n.d.). Right Scrubber for Your Facility: A Guide to Wet, Dry, and Semi-dry Scrubbers. Available at: https://theasengineers.com/choosing-the-right-scrubber
- Lee, I., Chang, T., Chang, C., Truong, V., & Ward, J. (2022). Comparison of Open-and Closed-Loop Operating Strategies for Exhaust Gas Scrubbing in Marine Applications. Journal of Engineering for the Maritime Environment, 237 (4). https://doi.org/10.1177/14750902221123845
- Carlson, A. (5 July 2024). Sweden Plans Ban on Scrubbers. Available at: https://shipandbunker.com/news/emea/451144-sweden-plans-ban-on-scrubbers
- Gao, F., & Toops, T. J. (2021). Selective Catalytic Reduction: From Basic Science to deNOx Applications. Catalysts, 11 (250). https://doi.org/10.3390/catal11020250
- Lu, X., Geng, P., & Chen, Y. (2020). NOₓ Emission Reduction Technology for Marine Engines Based on Tier III: A Review. Journal of Thermal Science, 29. https://doi.org/10.1007/s11630-020-1342-y
- Bayramoğlu, K., Yilmaz, S., & Nuran, M. (2024). Reduction of NOₓ Pollutants from Ship Engines Using High-Pressure Selective Catalytic Reduction Systems. Environmental Science and Pollution Research, 31, 1–13. https://doi.org/10.1007/s11356-024-33439-y
- Zhao, J., Zhang, X., Yang, F., Ai, Y., Chen, Y., & Pan, D. (2024). Strategy and Technical Progress of Recycling Spent Vanadium–Titanium-Based Selective Catalytic Reduction Catalysts. ACS Omega, 9 (6), 6036–6058. https://doi.org/10.1021/acsomega.3c07019
- Li, M., Liu, B., Wang, X., Yu, X., Zheng, S., Du, H., … & Zhang, Y. (2017). A Promising Approach to Recover a Spent SCR Catalyst: Deactivation by Arsenic and Alkaline Metals and Catalyst Regeneration. Chemical Engineering Journal, 342. https://doi.org/10.1016/j.cej.2017.12.132
- Zhao, T., Li, R., Zhang, Z., & Song, C. (2025). Current Status of Onboard Carbon Capture and Storage (OCCS): A Technical Assessment. Carbon Capture Science & Technology, 15. https://doi.org/10.1016/j.ccst.2025.100402
- Zanobetti, F., Pio, G., Bucelli, M., Miani, L., Jafarzadeh, S., & Cozzani, V. (2024). Onboard Carbon Capture for Fossil Fuel-Based Shipping: A Sustainability Assessment. Journal of Cleaner Production, 470. https://doi.org/10.1016/j.jclepro.2024.143343
- Xing, H. (2023). Onboard Carbon Capture and Storage (OCCS): Feasibility Analysis and Policy Measures. Master’s Thesis. World Maritime University. Available at: https://commons.wmu.se/all_dissertations/3336
- Madejski, P., Chmiel, K., Subramanian, N., & Kuś, T. (2022). Methods and Techniques for CO₂ Capture: Review of Potential Solutions and Applications. Energies, 15 (887). https://doi.org/10.3390/en15030887
- Zhao, T., Li, R., Zhang, Z., & Song, C. (2025). Current Status of Onboard Carbon Capture and Storage (OCCS) Systems: A Survey of Technical Assessment. Carbon Capture Science & Technology, 15. https://doi.org/10.1016/j.ccst.2025.100402
- Bortuzzo, V., Bertagna, S., Braidotti, L., & Cozzani, V. (2025). CO₂ Emissions Reduction in Shipping: Ca(OH)₂-Based Carbon Capture. Frontiers in Marine Science, 12. https://doi.org/10.3389/fmars.2025.1434342
- Pancione, E., Erto, A., Di Natale, F., Lancia, A., & Balsamo, M. (2024). A Comprehensive Review of Post-Combustion CO₂ Capture Technologies for Maritime Applications. Journal of CO₂ Utilization, 89. https://doi.org/10.1016/j.jcou.2024.102955
- Future Zone. (2024). Frachtschiff fängt seine eigenen CO₂-Emissionen ab. Available at: https://futurezone.at/digital-life/frachtschiff-co2-emissionen-abgase-container-seabound/402782878
- Van Duc Long, N., Lee, D. Y., Kwag, C., Lee, Y. M., Lee, S. W., Lewis, D., … & Lee, M. (2024). Removal of Marine NOₓ, SOₓ, and CO₂ from Flue Gas: Simulation and Experiment. Chemical Engineering Journal, 130558. https://wrap.warwick.ac.uk/id/eprint/188602
- Panomsuwan, G., Rujiravanit, R., Ueno, T., & Saito, N. (2016). Non-thermal Plasma Technology for Marine Diesel Engine Emission Control. Journal of the Korean Society of Marine Engineering, 40 (10), 929–934. https://doi.org/10.5916/jkosme.2016.40.10.929
- Brandenburg, R., Barankova, H., Bardos, L., Chmielewski, A. G., Dors, M., Grosch, H., … & Stamate, E. (2011). Plasma-based depollution of exhausts: Principles, state of the art and prospects. In: A. G. Chmielewski (Ed.), Monitoring, Control and Effects of Air Pollution (pp. 229–254). Technical University of Denmark. https://doi.org/10.5772/20351
- Mierczyński, P., Mierczynska-Vasilev, A., Szynkowska-Jóźwik, M. I., Ostrikov, K. (K.), & Vasilev, K. (2023). Plasma-Assisted Catalysis for CH₄ and CO₂ Conversion. Catalysis Communications, 180. https://doi.org/10.1016/j.catcom.2023.106709
- Mohamed, R. Y. A., Kumarachari, R. K., Bukke, S. P. N., Neerugatti, D., Mekasha, Y. T., & Bandarapalle, K. (2025). Plasma Catalysis for Sustainable Industry: Lab-scale Studies and Pathways to Upscaling. Discover Applied Sciences, 7, 271. https://doi.org/10.1007/s42452-025-06718-7
- Adnew, G. A., Meusinger, C., Bork, N., Gallus, M., Kyte, M., Rodins, V., … & Johnson, M. S. (2016). Gas-Phase Advanced Oxidation as an Integrated Air Pollution Control Technique. AIMS Environmental Science, 3 (1), 141–158. https://doi.org/10.3934/environsci.2016.1.141
- Litter, M. I., & Quici, N. (2010). Photochemical Advanced Oxidation Processes for Wastewater Treatment. Recent Patents on Engineering, 4 (3). https://doi.org/10.2174/187221210794578574
- Yang, J., Zhao, X., Wei, S., Wang, P., Yang, Y., Zou, B, … & Song, L. (2025). Innovative AOPs Based on Hydrodynamic Cavitation for Simultaneous Desulfurization and Denitration. Chemical Engineering Journal, 505. https://doi.org/10.1016/j.cej.2025.159254
- Johnson, M. S., Nilsson, E. J. K., Svensson, E. A., & Langer, S. (2014). Gas-Phase Advanced Oxidation for In Situ Pollution Control. Environmental Science & Technology, 48 (15), 8768–8776. https://doi.org/10.1021/es5012687
- Rayaroth, M. P., Aravindakumar, C. T., Shah, N. S., & Boczkaj, G. (2022). Advanced Oxidation Processes (AOPs) for Wastewater Treatment: Unexpected Nitration Side Reactions – A Serious Environmental Issue. Chemical Engineering Journal, 430 (Part 4). https://doi.org/10.1016/j.cej.2021.133002
- Dhamorikar, R. S., Lade, V. G., Kewalramani, P. V., & Bindwal, A. B. (2024). Review on Integrated Advanced Oxidation Processes for Water and Wastewater Treatment. Journal of Industrial and Engineering Chemistry, 138, 104–122. https://doi.org/10.1016/j.jiec.2024.04.037
- Mission Zero Technologies. (2024). Electrochemical Direct Air Capture: Lab Notes. Available at: https://www.missionzero.tech/lab-notes/electrochemical-direct-air-capture
- Wang, C., Jiang, K., Yu, H., Li, S., Zhao, Y., Zheng, Z., … & Li, K. (2025). Review of Electrochemical CO₂ Capture for Practical Applications. Next Materials, 8. https://doi.org/10.1016/j.nxmate.2025.100660
- Ghezel, H., Jolly, S., Patel, D., & Steen, W. (2017). Electrochemical Membrane Technology for CO₂ Capture. Energy Procedia, 108, 2–9. https://doi.org/10.1016/j.egypro.2016.12.183
- Sharifian, R., Vermaas, D., Digdaya, I., Xiang, C., & Vermaas, D. A. (2020). Electrochemical CO₂ Capture to Close the Carbon Cycle. Energy & Environmental Science, 14. https://doi.org/10.1039/d0ee03382k
- Oh, J., Anantharaman, R., Zahid, U., Lee, P., & Lim, Y. (2022). Process Design of Onboard Membrane Carbon Capture for LNG-Fueled Ships. Separation and Purification Technology, 282. https://doi.org/10.1016/j.seppur.2021.120052
- SEPURAN® by Evonik. (n.d.). Efficient Gas Separation Using Hollow-Fiber Membranes. Available at: https://www.membrane-separation.com
- PubChem. (n.d.). Patent Summary for US-9291083-B2: Membrane-Based Exhaust Gas Scrubbing System. Available at: https://pubchem.ncbi.nlm.nih.gov/patent/US-9291083-B2
- Chuah, C. Y. (2022). Membranes for Gas Separation and Purification. Membranes, 12, 622. https://doi.org/10.3390/membranes12060622
- Balachandran, W., Flnst, P., Manivannan, N., Beleca, R., & Abbod, M. (2015). Reduction of NOₓ and PM in Marine Diesel Engine Exhaust Using Microwave Plasma. Journal of Physics: Conference Series, 646, 012053. https://doi.org/10.1088/1742-6596/646/1/012053
- Abbod, M., Beleca, R., Peirce, D., Ganippa, L., Manivannan, N., & Balachandran, W. (2016). Power Controlled Microwave Reactor for the Removal of NOx and SOx from the Exhaust of Marine Diesel Engines. In M. Andre & Z. Samaras (Eds.), Energy and Environment (pp. 373–284). https://doi.org/10.1002/9781119307761.ch24
- Savu, S. V., Marin, R. C., David, A., Olei, A. B., Dimitru, I., Tarnita, D., … & Savu, I. D. (2022). Reducing NOₓ Emissions via Microwave Heating in Inland Waterway Vessels. Sustainability, 14 (7), 4156. https://doi.org/10.3390/su14074156
- D’Isa, F. A., Carbone, E. A. D., Hecimovic, A., & Fantz, U. (2020). Performance Analysis of a 2.45 GHz Microwave Plasma Torch for CO₂ Decomposition. Plasma Sources Science and Technology, 29, 105009. https://doi.org/10.1088/1361-6595/abaa84
- Kawasaki Heavy Industries. (2020). Kawasaki Completes Installation of Liquefied Hydrogen Storage Tank for Marine Transport. Available at: https://global.kawasaki.com/en/corp/newsroom/news/detail/?f=20200309_3090\
- Fuel Cell and Hydrogen Energy Association. (2020). Road Map to a U.S. Hydrogen Economy. Available at: https://static1.squarespace.com/static/53ab1feee4b0bef0179a1563/t/5e7ca9d6c8fb3629d399fe0c/1585228263363/Road+Map+to+a+US+Hydrogen+Economy+Full+Report.pdf
- Gulli, C., Heid, B., Noffsinger, J., Waardenburg, M., & Wilthaner, M. (2024). Global Energy Perspective 2023: Hydrogen Outlook. McKinsey & Company. Available at: https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2023-hydrogen-outlook