Have a personal or library account? Click to login
Reduced Order Modelling for the Drone Flow Field: Autoencoder-Driven Nonlinear Compression Versus Pod Cover

Reduced Order Modelling for the Drone Flow Field: Autoencoder-Driven Nonlinear Compression Versus Pod

By: R. Ralla  
Open Access
|Dec 2025

References

  1. Holmes, P., Lumley, J. L., Berkooz, G., & Rowley, C. W. (2012). Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.
  2. Brunton, S. L., & Kutz, J. N. (2019). Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press.
  3. Kadeethum, T., Ballarin, F., O’Malley, D., Choi, Y., Bouklas, N., & Yoon, H. (2022). Reduced Order Modelling for Flow and Transport Problems with Barlow Twins Self-Supervised Learning. Scientific Reports, 12, 14240. Available at: https://www.nature.com/articles/s41598-022-24545-3
  4. Berahmand, K., Daneshfar, F., Salehi, E., & Li, Y. (2024). Autoencoders and Their Applications in Machine Learning: A Survey. Artificial Intelligence Review, 57 (2), 52. https://doi.org/10.1007/s10462-023-10662-6
  5. Jierula, A., Wang, S., OH, T.-M., & Wang, P. (2021). Study on Accuracy Metrics for Evaluating the Predictions of Damage Locations in Deep Piles Using Artificial Neural Networks with Acoustic Emission Data. Applied Sciences, 11 (5), 2314. https://doi.org/10.3390/app11052314
  6. Taira, K., Brunton, S. L., Dawson, S. T. M., Rowley, C. W., Colonius, T., McKeon, B. J., … & Ukeiley, L. S. (2017). Modal Analysis of Fluid Flows: An Overview. AIAA Journal, 55 (12), 4013–4041. https://doi.org/10.2514/1.J056060
  7. Ling, J., Kurzawski, A., & Templeton, J. (2016). Reynolds Averaged Turbulence Modelling Using Deep Neural Networks with Embedded Invariance. Journal of Fluid Mechanics, 807, 155–166. https://doi.org/10.1017/jfm.2016.615
  8. Duraisamy, K., Iaccarino, G., & Xiao, H. (2019). Turbulence Modelling in the Age of Data. Annual Review of Fluid Mechanics, 51, 357–377. https://doi.org/10.1146/annurev-fluid-010518-040547
  9. Fukami, K., Nakamura, T., & Fugata, K. (2020). Convolutional Neural Network Based Hierarchical Autoencoder for Nonlinear Mode Decomposition of Fluid Field Data. Physics of Fluids, 32 (9), 095110. https://doi.org/10.1063/5.0020721
  10. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Autoencoders. In Deep Learning (pp. 499–523). MIT Press.
  11. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15 (56), 1929–1958.
  12. Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd ed.) O’Reilly Media.
  13. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Machine Learning Basics. In Deep Learning (pp. 96–161). MIT Press.
  14. Chicco, D., & Warrens, M. J., & Jurman, G. (2021). The Coefficient of Determination R-Squared is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623
  15. Volkwein, S. (August 27, 2013). Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling. University of Konstanz. Lecture Notes. Available at: https://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf
DOI: https://doi.org/10.2478/lpts-2025-0044 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 72 - 85
Published on: Dec 6, 2025
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 R. Ralla, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.