Have a personal or library account? Click to login
Hydrogen as a Pathway to Heat Production Cover

References

  1. Hydrogen Europe. (n.d.). Hydrogen Europe – Tech. [Overview]. Available at: https://hydrogeneurope.eu/wp-content/uploads/2021/11/Tech-Overview_Hydrogen-Applications.pdf
  2. European Commission. (2023). Renewable Hydrogen. Available at: energy.ec.europa. eu/topics/eus-energy-system/hydrogen/renewable-hydrogen_en
  3. World Nuclear Association. (1 May 2024). Hydrogen Production and Uses – World Nuclear Association. Available at: world- nuclear.org/information-library/energy- and-the-environment/hydrogen-production- and-uses
  4. Hossain, M., & Zahed S. (2025). Hydrogen as an Alternative Fuel: A Comprehensive Review of Challenges and Opportunities in Production, Storage, and Transportation. International Journal of Hydrogen Energy, 102 (102), 1026–1044. https://doi.org/10.1016/j.ijhydene.2025.01.033">https://doi.org/10.1016/j.ijhydene.2025.01.033
  5. Genovese, M., Schlüter, A., Scionti, E., Piraino, F., Corigliano, O., & Fragiacomo, P. (2023). Power-to-Hydrogen and Hydrogen-to-X Energy Systems for the Industry of the Future in Europe. International Journal of Hydrogen Energy, 48 (44). https://doi.org/10.1016/j.ijhydene.2023.01.194">https://doi.org/10.1016/j.ijhydene.2023.01.194
  6. Backurs, A., Zemite, L., & Jansons, L. (2024). A Technical and Economic Study of Sustainable Power Generation Backup. Latvian Journal of Physics and Technical Sciences, 61 (4), 75–88. 10.2478/lpts-2024-0029">http://doi.org/10.2478/lpts-2024-0029
  7. Hydrogen Europe. (2024). Clean Hydrogen Monitor. Available at: https://hydrogeneurope.eu/wp-content/uploads/2024/11/Clean_Hydrogen_Monitor_11-2024_V2_DIGITAL_draft3-1.pdfhttps://www.iea.org/reports/the-future-of-hydrogen
  8. Kozadajevs, J., Dolgicers, A., & Boreiko, D. (2021). CHPP Operation Mode Optimization under Electricity and Gas Market Conditions Using a Genetic Algorithm. Latvian Journal of Physics and Technical Sciences, 58 (3), 154–168. https://doi.org/10.2478/lpts-2021-0023">https://doi.org/10.2478/lpts-2021-0023
  9. COM/2020/301 final. (7 Aug. 2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Hydrogen Strategy for a Climate-Neutral Europe. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0301
  10. IRENA. (2022). Global Hydrogen Trade to Meet the 1.5 °C Climate Goal Part II Technology Review of Hydrogen Carriers. Available at: https://india-re-navigator.com/public/uploads/1651644555-IRENA_Global_Trade_Hydrogen_2022.pdf
  11. Genc, T. S., & Kosempel, S. (2023). Energy Transition and the Economy: A Review Article. Energies, 16 (7), 2965. https://doi.org/10.3390/en16072965">https://doi.org/10.3390/en16072965
  12. Dash, S. K., Chakraborty, S., & Elangovan, D. (2023). A Brief Review of Hydrogen Production Methods and Their Challenges. Energies, 16 (3), 1141. https://doi.org/10.3390/en16031141">https://doi.org/10.3390/en16031141
  13. COM/2019/640 final. (2019). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Available at: eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640
  14. Jansons, L., Zemite, L., Zeltins, N., Geipele, I., & Bačkurs, A. (2023). Green and Sustainable Hydrogen in Emerging European Smart Energy Framework. Latvian Journal of Physics and Technical Sciences, 60 (1), 24–38. 10.2478/lpts-2023-0003">http://doi.org/10.2478/lpts-2023-0003
  15. Lambert, M. (2020). EU Hydrogen Strategy a Case for Urgent Action towards Implementation. Available at: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2020/07/EU-Hydrogen-Strategy.pdf
  16. Zemite, L., Backurs, A., Starikovs, A., Laizāns, A., Jansons, L., Vempere, L., … & Broks, A. (2023). A Comprehensive Overview of the European and Baltic Landscape for Hydrogen Applications and Innovations. Latvian Journal of Physics and Technical Sciences, 60 (3), 33–53. 10.2478/lpts-2023-0016">http://doi.org/10.2478/lpts-2023-0016
  17. European Biogas Association. (n.d.). Biohydrogen’s Take into the Net-Zero Equation. Available at: www.europeanbiogas.eu/biohydrogens-take-into-the-net-zero-equation/
  18. Hydrogen Council. (2021). Hydrogen for Net-Zero a Critical Cost-Competitive Energy Vector. Available at: https://hydrogencouncil.com/wp-content/uploads/2021/11/Hydrogen-for-Net-Zero.pdf
  19. Dincer, I., & Canan A. (2015). Review and Evaluation of Hydrogen Production Methods for Better Sustainability. International Journal of Hydrogen Energy, 40 (34), 11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035">https://doi.org/10.1016/j.ijhydene.2014.12.035
  20. Jansons, L., Zemite, L., Zeltiņš, N., Bode, I., Geipele, I., & Kiesners, K. (2022). The Green Hydrogen and the EU Gaseous Fuel Diversification Risks. Latvian Journal of Physics and Technical Sciences, 59 (4), 53–70. 10.2478/lpts-2022-0033">http://doi.org/10.2478/lpts-2022-0033
  21. Renau, J., García, V., Domenech, L., Verdejo, P., Real, A., Giménez, A., … & Barreras, F. (2021). Novel Use of Green Hydrogen Fuel Cell-Based Combined Heat and Power Systems to Reduce Primary Energy Intake and Greenhouse Emissions in the Building Sector. Sustainability, 13 (4), 1776. https://doi.org/10.3390/su13041776">https://doi.org/10.3390/su13041776
  22. Sanz i López, V., Costa-Castelló, R., & Batlle, C. (2022). Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications. Energies, 15 (17), 6423. https://doi.org/10.3390/en15176423">https://doi.org/10.3390/en15176423
  23. Backurs, A., Jansons, L., & Laizans, A. (2025). Water electrolysis technologies: Comparison of maturity, operational and cost efficiency. In: 24th International Scientific Conference “Engineering for Rural Development”, Proceedings (vol. 24), (pp. 275–285). 21–23 May, Jelgava: Latvia University of Life Sciences and Technologies. 10.22616/ERDev.2025.24.TF061">http://doi.org/10.22616/ERDev.2025.24.TF061
  24. Yu, S., Fan, Y., Shi, Z., Li, J., Zhao, X., Zhang, T., & Chang, Z. (2023). Hydrogen-Based Combined Heat and Power Systems: A Review of Technologies and Challenges. International Journal of Hydrogen Energy, 48 (89). https://doi.org/10.1016/j.ijhydene.2023.05.187">https://doi.org/10.1016/j.ijhydene.2023.05.187
  25. Ursua, A., Gandia, L. M., & Sanchis, P. (2012). Hydrogen production from water electrolysis: Current status and future trends. In: Proceedings of the IEEE (vol. 100, no. 2), (pp. 410–426). https://doi.org/10.1109/JPROC.2011.2156750">https://doi.org/10.1109/JPROC.2011.2156750
  26. Laguna-Bercero, M. A. (2012). Recent Advances in High Temperature Electrolysis Using Solid Oxide Fuel Cells: A Review. Journal of Power Sources, 203, 4–16. https://doi.org/10.1016/j.jpowsour.2011.12.019">https://doi.org/10.1016/j.jpowsour.2011.12.019
  27. Zemite, L., Bode, I., Ellins, R., & Saicans, E. (2025). Hydrogen as a clean energy source for heat supply. In: Paolini, V., Petracchini, F. (eds.), Hydrogen and Low-Carbon Fuels in Circular Bio-economy. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-92894-9_14">https://doi.org/10.1007/978-3-031-92894-9_14
  28. Rusovs, D., Jansons, L., Zeltins, N., & Geipele, I. (2023). Efficient Heat Recovery from Hydrogen and Natural Gas Blend Combustion Products. Latvian Journal of Physics and Technical Sciences, 60 (2), 31–42. 10.2478/lpts-2023-0009">http://doi.org/10.2478/lpts-2023-0009
  29. Szablowski, L., Wojcik, M., & Dybinski, O. (2025). Review of Steam Methane Reforming as a Method of Hydrogen Production. Energy, 316, 134540. https://doi.org/10.1016/j.energy.2025.134540">https://doi.org/10.1016/j.energy.2025.134540
  30. Nnabuife, S. G., Darko, C. K., Obiako, P. C., Kuang, B., Sun, X., & Jenkins, K. (2023). A Comparative Analysis of Different Hydrogen Production Methods and Their Environmental Impact. Clean Technologies, 5 (4), 1344–1380. https://doi.org/10.3390/cleantechnol5040067">https://doi.org/10.3390/cleantechnol5040067
  31. Tuluhong, A., Chang, Q., Xie, L., Xu, Z., & Song, T. (2024). Current Status of Green Hydrogen Production Technology: A Review. Sustainability, 16 (20), 9070. https://doi.org/10.3390/su16209070">https://doi.org/10.3390/su16209070
  32. Mohd Yunus, S., Yusup, S., Johari, S. S., Mohd Afandi, N., Manap, A., & Mohamed, H. (2024). Comparative Hydrogen Production Routes via Steam Methane Reforming and Chemical Looping Reforming of Natural Gas as Feedstock. Hydrogen, 5 (4), 761–775. https://doi.org/10.3390/hydrogen5040040">https://doi.org/10.3390/hydrogen5040040
  33. Andersson, J., & Grönkvist, S. (2019). Large-Scale Storage of Hydrogen. International Journal of Hydrogen Energy, 44 (23), 11901–11919. https://doi.org/10.1016/j.ijhydene.2019.03.063">https://doi.org/10.1016/j.ijhydene.2019.03.063
  34. US Department of Energy. (2024). Hydrogen Storage. Available at: www.energy.gov/eere/fuelcells/hydrogen-storage
  35. Aziz, M. (2021). Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies, 14 (18), 5917. https://doi.org/10.3390/en14185917">https://doi.org/10.3390/en14185917
  36. Zvirgzdins, J., & Linkevics, O. (2020). Pumped-Storage Hydropower Plants as Enablers for Transition to Circular Economy in Energy Sector: A Case of Latvia. Latvian Journal of Physics and Technical Sciences, 57 (3), 20–31. https://doi.org/10.2478/lpts-2020-0012">https://doi.org/10.2478/lpts-2020-0012
  37. Li, J.-Q., Li, J.-C., Park, K., Jang, S.-J., & Kwon, J.-T. (2021). An Analysis on the Compressed Hydrogen Storage System for the Fast-Filling Process of Hydrogen Gas at the Pressure of 82 MPa. Energies, 14 (9), 2635. https://doi.org/10.3390/en14092635">https://doi.org/10.3390/en14092635
  38. Mekonnin, A. S., Wacławiak, K., Humayun, M., Zhang, S., & Ullah, H. (2025). Hydrogen Storage Technology, and Its Challenges: A Review. Catalysts, 15 (3), 260. https://doi.org/10.3390/catal15030260">https://doi.org/10.3390/catal15030260
  39. Dawood, F., Shafiullah, G., & Anda, M. (2025). Hydrogen-Enabled Power Systems: Technologies’ Options Overview and Effect on the Balance of Plant. Hydrogen, 6 (3), 57. https://doi.org/10.3390/hydrogen6030057">https://doi.org/10.3390/hydrogen6030057
  40. Antony Ramesh, A. N., Aliyu, A. M., Tucker, N., & Albayati, I. M. (2025). Hydrogen Storage Vessel for a Proton-Exchange Membrane (PEM) Fuel Cell Auxiliary Power Unit for Commercial Aircraft. Applied Sciences, 15 (14), 8006. https://doi.org/10.3390/app15148006">https://doi.org/10.3390/app15148006
  41. Li, J., Chai, X., Gu, Y., Zhang, P., Yang, X., Wen, Y., … & Zhang, T. (2024). Small-Scale High-Pressure Hydrogen Storage Vessels: A Review. Materials, 17 (3), 721. https://doi.org/10.3390/ma17030721">https://doi.org/10.3390/ma17030721
  42. Joundi, M., Mehdizadeh, R., Deck, O., & Mateo, K. (2023). Evaluation of the Reliability of Buried Gas Pipelines Exposed to Ground Movement in the Perspective of Their Use for Hydrogen Transportation: A State-of-Art Review. Symposium on Energy Geotechnics 2023, 1–2. https://doi.org/10.59490/seg.2023.564">https://doi.org/10.59490/seg.2023.564
  43. Peighambardoust, S. J. Rowshanzamir, S., & Amjadi, M. (2010). Review of the Proton Exchange Membranes for Fuel Cell Applications. International Journal of Hydrogen Energy, 35 (17), 9349–9384. https://doi.org/10.1016/j.ijhydene.2010.05.017">https://doi.org/10.1016/j.ijhydene.2010.05.017
DOI: https://doi.org/10.2478/lpts-2025-0040 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 109 - 125
Published on: Oct 7, 2025
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2025 D. Kronkalns, L. Zemite, I. Bode, L. Jansons, O. Slutins, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.