References
- Hydrogen Europe. (n.d.). Hydrogen Europe – Tech. [Overview]. Available at: https://hydrogeneurope.eu/wp-content/uploads/2021/11/Tech-Overview_Hydrogen-Applications.pdf
- European Commission. (2023). Renewable Hydrogen. Available at: energy.ec.europa. eu/topics/eus-energy-system/hydrogen/renewable-hydrogen_en
- World Nuclear Association. (1 May 2024). Hydrogen Production and Uses – World Nuclear Association. Available at: world- nuclear.org/information-library/energy- and-the-environment/hydrogen-production- and-uses
- Hossain, M., & Zahed S. (2025). Hydrogen as an Alternative Fuel: A Comprehensive Review of Challenges and Opportunities in Production, Storage, and Transportation. International Journal of Hydrogen Energy, 102 (102), 1026–1044. https://doi.org/10.1016/j.ijhydene.2025.01.033
- Genovese, M., Schlüter, A., Scionti, E., Piraino, F., Corigliano, O., & Fragiacomo, P. (2023). Power-to-Hydrogen and Hydrogen-to-X Energy Systems for the Industry of the Future in Europe. International Journal of Hydrogen Energy, 48 (44). https://doi.org/10.1016/j.ijhydene.2023.01.194
- Backurs, A., Zemite, L., & Jansons, L. (2024). A Technical and Economic Study of Sustainable Power Generation Backup. Latvian Journal of Physics and Technical Sciences, 61 (4), 75–88. http://doi.org/10.2478/lpts-2024-0029
- Hydrogen Europe. (2024). Clean Hydrogen Monitor. Available at: https://hydrogeneurope.eu/wp-content/uploads/2024/11/Clean_Hydrogen_Monitor_11-2024_V2_DIGITAL_draft3-1.pdfhttps://www.iea.org/reports/the-future-of-hydrogen
- Kozadajevs, J., Dolgicers, A., & Boreiko, D. (2021). CHPP Operation Mode Optimization under Electricity and Gas Market Conditions Using a Genetic Algorithm. Latvian Journal of Physics and Technical Sciences, 58 (3), 154–168. https://doi.org/10.2478/lpts-2021-0023
- COM/2020/301 final. (7 Aug. 2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Hydrogen Strategy for a Climate-Neutral Europe. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0301
- IRENA. (2022). Global Hydrogen Trade to Meet the 1.5 °C Climate Goal Part II Technology Review of Hydrogen Carriers. Available at: https://india-re-navigator.com/public/uploads/1651644555-IRENA_Global_Trade_Hydrogen_2022.pdf
- Genc, T. S., & Kosempel, S. (2023). Energy Transition and the Economy: A Review Article. Energies, 16 (7), 2965. https://doi.org/10.3390/en16072965
- Dash, S. K., Chakraborty, S., & Elangovan, D. (2023). A Brief Review of Hydrogen Production Methods and Their Challenges. Energies, 16 (3), 1141. https://doi.org/10.3390/en16031141
- COM/2019/640 final. (2019). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Available at: eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640
- Jansons, L., Zemite, L., Zeltins, N., Geipele, I., & Bačkurs, A. (2023). Green and Sustainable Hydrogen in Emerging European Smart Energy Framework. Latvian Journal of Physics and Technical Sciences, 60 (1), 24–38. http://doi.org/10.2478/lpts-2023-0003
- Lambert, M. (2020). EU Hydrogen Strategy a Case for Urgent Action towards Implementation. Available at: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2020/07/EU-Hydrogen-Strategy.pdf
- Zemite, L., Backurs, A., Starikovs, A., Laizāns, A., Jansons, L., Vempere, L., … & Broks, A. (2023). A Comprehensive Overview of the European and Baltic Landscape for Hydrogen Applications and Innovations. Latvian Journal of Physics and Technical Sciences, 60 (3), 33–53. http://doi.org/10.2478/lpts-2023-0016
- European Biogas Association. (n.d.). Biohydrogen’s Take into the Net-Zero Equation. Available at: www.europeanbiogas.eu/biohydrogens-take-into-the-net-zero-equation/
- Hydrogen Council. (2021). Hydrogen for Net-Zero a Critical Cost-Competitive Energy Vector. Available at: https://hydrogencouncil.com/wp-content/uploads/2021/11/Hydrogen-for-Net-Zero.pdf
- Dincer, I., & Canan A. (2015). Review and Evaluation of Hydrogen Production Methods for Better Sustainability. International Journal of Hydrogen Energy, 40 (34), 11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035
- Jansons, L., Zemite, L., Zeltiņš, N., Bode, I., Geipele, I., & Kiesners, K. (2022). The Green Hydrogen and the EU Gaseous Fuel Diversification Risks. Latvian Journal of Physics and Technical Sciences, 59 (4), 53–70. http://doi.org/10.2478/lpts-2022-0033
- Renau, J., García, V., Domenech, L., Verdejo, P., Real, A., Giménez, A., … & Barreras, F. (2021). Novel Use of Green Hydrogen Fuel Cell-Based Combined Heat and Power Systems to Reduce Primary Energy Intake and Greenhouse Emissions in the Building Sector. Sustainability, 13 (4), 1776. https://doi.org/10.3390/su13041776
- Sanz i López, V., Costa-Castelló, R., & Batlle, C. (2022). Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications. Energies, 15 (17), 6423. https://doi.org/10.3390/en15176423
- Backurs, A., Jansons, L., & Laizans, A. (2025). Water electrolysis technologies: Comparison of maturity, operational and cost efficiency. In: 24th International Scientific Conference “Engineering for Rural Development”, Proceedings (vol. 24), (pp. 275–285). 21–23 May, Jelgava: Latvia University of Life Sciences and Technologies. http://doi.org/10.22616/ERDev.2025.24.TF061
- Yu, S., Fan, Y., Shi, Z., Li, J., Zhao, X., Zhang, T., & Chang, Z. (2023). Hydrogen-Based Combined Heat and Power Systems: A Review of Technologies and Challenges. International Journal of Hydrogen Energy, 48 (89). https://doi.org/10.1016/j.ijhydene.2023.05.187
- Ursua, A., Gandia, L. M., & Sanchis, P. (2012). Hydrogen production from water electrolysis: Current status and future trends. In: Proceedings of the IEEE (vol. 100, no. 2), (pp. 410–426). https://doi.org/10.1109/JPROC.2011.2156750
- Laguna-Bercero, M. A. (2012). Recent Advances in High Temperature Electrolysis Using Solid Oxide Fuel Cells: A Review. Journal of Power Sources, 203, 4–16. https://doi.org/10.1016/j.jpowsour.2011.12.019
- Zemite, L., Bode, I., Ellins, R., & Saicans, E. (2025). Hydrogen as a clean energy source for heat supply. In: Paolini, V., Petracchini, F. (eds.), Hydrogen and Low-Carbon Fuels in Circular Bio-economy. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-92894-9_14
- Rusovs, D., Jansons, L., Zeltins, N., & Geipele, I. (2023). Efficient Heat Recovery from Hydrogen and Natural Gas Blend Combustion Products. Latvian Journal of Physics and Technical Sciences, 60 (2), 31–42. http://doi.org/10.2478/lpts-2023-0009
- Szablowski, L., Wojcik, M., & Dybinski, O. (2025). Review of Steam Methane Reforming as a Method of Hydrogen Production. Energy, 316, 134540. https://doi.org/10.1016/j.energy.2025.134540
- Nnabuife, S. G., Darko, C. K., Obiako, P. C., Kuang, B., Sun, X., & Jenkins, K. (2023). A Comparative Analysis of Different Hydrogen Production Methods and Their Environmental Impact. Clean Technologies, 5 (4), 1344–1380. https://doi.org/10.3390/cleantechnol5040067
- Tuluhong, A., Chang, Q., Xie, L., Xu, Z., & Song, T. (2024). Current Status of Green Hydrogen Production Technology: A Review. Sustainability, 16 (20), 9070. https://doi.org/10.3390/su16209070
- Mohd Yunus, S., Yusup, S., Johari, S. S., Mohd Afandi, N., Manap, A., & Mohamed, H. (2024). Comparative Hydrogen Production Routes via Steam Methane Reforming and Chemical Looping Reforming of Natural Gas as Feedstock. Hydrogen, 5 (4), 761–775. https://doi.org/10.3390/hydrogen5040040
- Andersson, J., & Grönkvist, S. (2019). Large-Scale Storage of Hydrogen. International Journal of Hydrogen Energy, 44 (23), 11901–11919. https://doi.org/10.1016/j.ijhydene.2019.03.063
- US Department of Energy. (2024). Hydrogen Storage. Available at: www.energy.gov/eere/fuelcells/hydrogen-storage
- Aziz, M. (2021). Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies, 14 (18), 5917. https://doi.org/10.3390/en14185917
- Zvirgzdins, J., & Linkevics, O. (2020). Pumped-Storage Hydropower Plants as Enablers for Transition to Circular Economy in Energy Sector: A Case of Latvia. Latvian Journal of Physics and Technical Sciences, 57 (3), 20–31. https://doi.org/10.2478/lpts-2020-0012
- Li, J.-Q., Li, J.-C., Park, K., Jang, S.-J., & Kwon, J.-T. (2021). An Analysis on the Compressed Hydrogen Storage System for the Fast-Filling Process of Hydrogen Gas at the Pressure of 82 MPa. Energies, 14 (9), 2635. https://doi.org/10.3390/en14092635
- Mekonnin, A. S., Wacławiak, K., Humayun, M., Zhang, S., & Ullah, H. (2025). Hydrogen Storage Technology, and Its Challenges: A Review. Catalysts, 15 (3), 260. https://doi.org/10.3390/catal15030260
- Dawood, F., Shafiullah, G., & Anda, M. (2025). Hydrogen-Enabled Power Systems: Technologies’ Options Overview and Effect on the Balance of Plant. Hydrogen, 6 (3), 57. https://doi.org/10.3390/hydrogen6030057
- Antony Ramesh, A. N., Aliyu, A. M., Tucker, N., & Albayati, I. M. (2025). Hydrogen Storage Vessel for a Proton-Exchange Membrane (PEM) Fuel Cell Auxiliary Power Unit for Commercial Aircraft. Applied Sciences, 15 (14), 8006. https://doi.org/10.3390/app15148006
- Li, J., Chai, X., Gu, Y., Zhang, P., Yang, X., Wen, Y., … & Zhang, T. (2024). Small-Scale High-Pressure Hydrogen Storage Vessels: A Review. Materials, 17 (3), 721. https://doi.org/10.3390/ma17030721
- Joundi, M., Mehdizadeh, R., Deck, O., & Mateo, K. (2023). Evaluation of the Reliability of Buried Gas Pipelines Exposed to Ground Movement in the Perspective of Their Use for Hydrogen Transportation: A State-of-Art Review. Symposium on Energy Geotechnics 2023, 1–2. https://doi.org/10.59490/seg.2023.564
- Peighambardoust, S. J. Rowshanzamir, S., & Amjadi, M. (2010). Review of the Proton Exchange Membranes for Fuel Cell Applications. International Journal of Hydrogen Energy, 35 (17), 9349–9384. https://doi.org/10.1016/j.ijhydene.2010.05.017