World Nuclear Association. (1 May 2024). Hydrogen Production and Uses – World Nuclear Association. Available at: world- nuclear.org/information-library/energy- and-the-environment/hydrogen-production- and-uses
Hossain, M., & Zahed S. (2025). Hydrogen as an Alternative Fuel: A Comprehensive Review of Challenges and Opportunities in Production, Storage, and Transportation. International Journal of Hydrogen Energy, 102 (102), 1026–1044. https://doi.org/10.1016/j.ijhydene.2025.01.033">https://doi.org/10.1016/j.ijhydene.2025.01.033
Genovese, M., Schlüter, A., Scionti, E., Piraino, F., Corigliano, O., & Fragiacomo, P. (2023). Power-to-Hydrogen and Hydrogen-to-X Energy Systems for the Industry of the Future in Europe. International Journal of Hydrogen Energy, 48 (44). https://doi.org/10.1016/j.ijhydene.2023.01.194">https://doi.org/10.1016/j.ijhydene.2023.01.194
Backurs, A., Zemite, L., & Jansons, L. (2024). A Technical and Economic Study of Sustainable Power Generation Backup. Latvian Journal of Physics and Technical Sciences, 61 (4), 75–88. 10.2478/lpts-2024-0029">http://doi.org/10.2478/lpts-2024-0029
Kozadajevs, J., Dolgicers, A., & Boreiko, D. (2021). CHPP Operation Mode Optimization under Electricity and Gas Market Conditions Using a Genetic Algorithm. Latvian Journal of Physics and Technical Sciences, 58 (3), 154–168. https://doi.org/10.2478/lpts-2021-0023">https://doi.org/10.2478/lpts-2021-0023
COM/2020/301 final. (7 Aug. 2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Hydrogen Strategy for a Climate-Neutral Europe. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0301
Genc, T. S., & Kosempel, S. (2023). Energy Transition and the Economy: A Review Article. Energies, 16 (7), 2965. https://doi.org/10.3390/en16072965">https://doi.org/10.3390/en16072965
Dash, S. K., Chakraborty, S., & Elangovan, D. (2023). A Brief Review of Hydrogen Production Methods and Their Challenges. Energies, 16 (3), 1141. https://doi.org/10.3390/en16031141">https://doi.org/10.3390/en16031141
COM/2019/640 final. (2019). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Available at: eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640
Jansons, L., Zemite, L., Zeltins, N., Geipele, I., & Bačkurs, A. (2023). Green and Sustainable Hydrogen in Emerging European Smart Energy Framework. Latvian Journal of Physics and Technical Sciences, 60 (1), 24–38. 10.2478/lpts-2023-0003">http://doi.org/10.2478/lpts-2023-0003
Zemite, L., Backurs, A., Starikovs, A., Laizāns, A., Jansons, L., Vempere, L., … & Broks, A. (2023). A Comprehensive Overview of the European and Baltic Landscape for Hydrogen Applications and Innovations. Latvian Journal of Physics and Technical Sciences, 60 (3), 33–53. 10.2478/lpts-2023-0016">http://doi.org/10.2478/lpts-2023-0016
Dincer, I., & Canan A. (2015). Review and Evaluation of Hydrogen Production Methods for Better Sustainability. International Journal of Hydrogen Energy, 40 (34), 11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035">https://doi.org/10.1016/j.ijhydene.2014.12.035
Jansons, L., Zemite, L., Zeltiņš, N., Bode, I., Geipele, I., & Kiesners, K. (2022). The Green Hydrogen and the EU Gaseous Fuel Diversification Risks. Latvian Journal of Physics and Technical Sciences, 59 (4), 53–70. 10.2478/lpts-2022-0033">http://doi.org/10.2478/lpts-2022-0033
Renau, J., García, V., Domenech, L., Verdejo, P., Real, A., Giménez, A., … & Barreras, F. (2021). Novel Use of Green Hydrogen Fuel Cell-Based Combined Heat and Power Systems to Reduce Primary Energy Intake and Greenhouse Emissions in the Building Sector. Sustainability, 13 (4), 1776. https://doi.org/10.3390/su13041776">https://doi.org/10.3390/su13041776
Sanz i López, V., Costa-Castelló, R., & Batlle, C. (2022). Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications. Energies, 15 (17), 6423. https://doi.org/10.3390/en15176423">https://doi.org/10.3390/en15176423
Backurs, A., Jansons, L., & Laizans, A. (2025). Water electrolysis technologies: Comparison of maturity, operational and cost efficiency. In: 24th International Scientific Conference “Engineering for Rural Development”, Proceedings (vol. 24), (pp. 275–285). 21–23 May, Jelgava: Latvia University of Life Sciences and Technologies. 10.22616/ERDev.2025.24.TF061">http://doi.org/10.22616/ERDev.2025.24.TF061
Yu, S., Fan, Y., Shi, Z., Li, J., Zhao, X., Zhang, T., & Chang, Z. (2023). Hydrogen-Based Combined Heat and Power Systems: A Review of Technologies and Challenges. International Journal of Hydrogen Energy, 48 (89). https://doi.org/10.1016/j.ijhydene.2023.05.187">https://doi.org/10.1016/j.ijhydene.2023.05.187
Ursua, A., Gandia, L. M., & Sanchis, P. (2012). Hydrogen production from water electrolysis: Current status and future trends. In: Proceedings of the IEEE (vol. 100, no. 2), (pp. 410–426). https://doi.org/10.1109/JPROC.2011.2156750">https://doi.org/10.1109/JPROC.2011.2156750
Laguna-Bercero, M. A. (2012). Recent Advances in High Temperature Electrolysis Using Solid Oxide Fuel Cells: A Review. Journal of Power Sources, 203, 4–16. https://doi.org/10.1016/j.jpowsour.2011.12.019">https://doi.org/10.1016/j.jpowsour.2011.12.019
Zemite, L., Bode, I., Ellins, R., & Saicans, E. (2025). Hydrogen as a clean energy source for heat supply. In: Paolini, V., Petracchini, F. (eds.), Hydrogen and Low-Carbon Fuels in Circular Bio-economy. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-92894-9_14">https://doi.org/10.1007/978-3-031-92894-9_14
Rusovs, D., Jansons, L., Zeltins, N., & Geipele, I. (2023). Efficient Heat Recovery from Hydrogen and Natural Gas Blend Combustion Products. Latvian Journal of Physics and Technical Sciences, 60 (2), 31–42. 10.2478/lpts-2023-0009">http://doi.org/10.2478/lpts-2023-0009
Szablowski, L., Wojcik, M., & Dybinski, O. (2025). Review of Steam Methane Reforming as a Method of Hydrogen Production. Energy, 316, 134540. https://doi.org/10.1016/j.energy.2025.134540">https://doi.org/10.1016/j.energy.2025.134540
Nnabuife, S. G., Darko, C. K., Obiako, P. C., Kuang, B., Sun, X., & Jenkins, K. (2023). A Comparative Analysis of Different Hydrogen Production Methods and Their Environmental Impact. Clean Technologies, 5 (4), 1344–1380. https://doi.org/10.3390/cleantechnol5040067">https://doi.org/10.3390/cleantechnol5040067
Tuluhong, A., Chang, Q., Xie, L., Xu, Z., & Song, T. (2024). Current Status of Green Hydrogen Production Technology: A Review. Sustainability, 16 (20), 9070. https://doi.org/10.3390/su16209070">https://doi.org/10.3390/su16209070
Mohd Yunus, S., Yusup, S., Johari, S. S., Mohd Afandi, N., Manap, A., & Mohamed, H. (2024). Comparative Hydrogen Production Routes via Steam Methane Reforming and Chemical Looping Reforming of Natural Gas as Feedstock. Hydrogen, 5 (4), 761–775. https://doi.org/10.3390/hydrogen5040040">https://doi.org/10.3390/hydrogen5040040
Andersson, J., & Grönkvist, S. (2019). Large-Scale Storage of Hydrogen. International Journal of Hydrogen Energy, 44 (23), 11901–11919. https://doi.org/10.1016/j.ijhydene.2019.03.063">https://doi.org/10.1016/j.ijhydene.2019.03.063
Aziz, M. (2021). Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies, 14 (18), 5917. https://doi.org/10.3390/en14185917">https://doi.org/10.3390/en14185917
Zvirgzdins, J., & Linkevics, O. (2020). Pumped-Storage Hydropower Plants as Enablers for Transition to Circular Economy in Energy Sector: A Case of Latvia. Latvian Journal of Physics and Technical Sciences, 57 (3), 20–31. https://doi.org/10.2478/lpts-2020-0012">https://doi.org/10.2478/lpts-2020-0012
Li, J.-Q., Li, J.-C., Park, K., Jang, S.-J., & Kwon, J.-T. (2021). An Analysis on the Compressed Hydrogen Storage System for the Fast-Filling Process of Hydrogen Gas at the Pressure of 82 MPa. Energies, 14 (9), 2635. https://doi.org/10.3390/en14092635">https://doi.org/10.3390/en14092635
Mekonnin, A. S., Wacławiak, K., Humayun, M., Zhang, S., & Ullah, H. (2025). Hydrogen Storage Technology, and Its Challenges: A Review. Catalysts, 15 (3), 260. https://doi.org/10.3390/catal15030260">https://doi.org/10.3390/catal15030260
Dawood, F., Shafiullah, G., & Anda, M. (2025). Hydrogen-Enabled Power Systems: Technologies’ Options Overview and Effect on the Balance of Plant. Hydrogen, 6 (3), 57. https://doi.org/10.3390/hydrogen6030057">https://doi.org/10.3390/hydrogen6030057
Antony Ramesh, A. N., Aliyu, A. M., Tucker, N., & Albayati, I. M. (2025). Hydrogen Storage Vessel for a Proton-Exchange Membrane (PEM) Fuel Cell Auxiliary Power Unit for Commercial Aircraft. Applied Sciences, 15 (14), 8006. https://doi.org/10.3390/app15148006">https://doi.org/10.3390/app15148006
Joundi, M., Mehdizadeh, R., Deck, O., & Mateo, K. (2023). Evaluation of the Reliability of Buried Gas Pipelines Exposed to Ground Movement in the Perspective of Their Use for Hydrogen Transportation: A State-of-Art Review. Symposium on Energy Geotechnics 2023, 1–2. https://doi.org/10.59490/seg.2023.564">https://doi.org/10.59490/seg.2023.564
Peighambardoust, S. J. Rowshanzamir, S., & Amjadi, M. (2010). Review of the Proton Exchange Membranes for Fuel Cell Applications. International Journal of Hydrogen Energy, 35 (17), 9349–9384. https://doi.org/10.1016/j.ijhydene.2010.05.017">https://doi.org/10.1016/j.ijhydene.2010.05.017