Have a personal or library account? Click to login
Pursuing Opportunity: A Multi-Dimensional Analysis of Green Hydrogen Production Technologies Cover

Pursuing Opportunity: A Multi-Dimensional Analysis of Green Hydrogen Production Technologies

Open Access
|Oct 2025

References

  1. Eurostat. (n.d.). Renewable Energy Statistics. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics
  2. EC. (n.d.). Renewable Energy Targets. Available at: https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en
  3. EC. (n.d.). 2050 Long-Term Strategy. Available at: https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en
  4. EC. (n.d.). Hydrogen. Available at: https://energy.ec.europa.eu/topics/eus-energy-system/hydrogen_en
  5. National Grid. (n.d.). The Hydrogen Colour Spectrum. Available at: https://www.nationalgrid.com/stories/energy-explained/hydrogen-colour-spectrum
  6. Jansons, L., Zemīte, L., Zeltiņš, N., Geipele, I., & Backurs, A. (2023). Green and Sustainable Hydrogen in Emerging European Smart Energy Framework. Latvian Journal of Physics and Technical Sciences, 60 (1), 24–38. 10.2478/lpts-2023-0003">http://doi.org/10.2478/lpts-2023-0003
  7. Zemite, L., Jansons, L., Zeltins, N., Lapuke, S., & Bode, I. (2023). Blending Hydrogen with Natural Gas/Biomethane and Transportation in Existing Gas Networks. Latvian Journal of Physics and Technical Sciences, 60 (5), 43–55. 10.2478/lpts-2023-0030">http://doi.org/10.2478/lpts-2023-0030
  8. Savickis, J., Zemīte, L., Zeltins, N., Bode, I., Jansons, L., Dzelzitis, E., … & Ansone, A. (2020). The Biomethane Injection into the Natural Gas Networks: The EU’s Gas Synergy Path. Latvian Journal of Physics and Technical Sciences, 57 (4), 34–50. 10.2478/lpts-2020-0020">http://doi.org/10.2478/lpts-2020-0020
  9. IRENA. (n.d.). Making Green Hydrogen a Cost-Competitive Climate Solution. Available at: https://www.irena.org/news/pressreleases/2020/Dec/Making-Green-Hydrogen-a-Cost-Competitive-Climate-Solution?utm
  10. IRENA. (n.d.). Renewable Power Generation Costs in 2023. Available at: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Sep/IRENA_Renewable_power_generation_costs_in_2023.pdf
  11. Yusaf, T., Laimon, M., Alrefae, W., Kadirgama, K., Dhahad, H. A., Ramasamy, D., … & Yousif, B. (2022). Hydrogen Energy Demand Growth Prediction and Assessment (2021–2050) Using a System Thinking and System Dynamics Approach. Applied Sciences, 12 (2), 781. https://doi.org/10.3390/app12020781">https://doi.org/10.3390/app12020781
  12. PWC. (n.d.). The Green Hydrogen Economy. Predicting the Decarbonisation Agenda of Tomorrow. Available at: https://www.pwc.com/gx/en/industries/energy-utilities-resources/green-hydrogen-cost.html
  13. EHO. (n.d.) The European Hydrogen Market Landscape. November 2024. Available at: https://observatory.clean-hydrogen.europa.eu/sites/default/files/2024-11/The%20European%20hydrogen%20market%20landscape_November%202024.pdf
  14. Backurs, A., Jansons, L., & Laizans, A. (2025). Water electrolysis technologies: Comparison of maturity, operational and cost efficiency. In: 24th International Scientific Conference “Engineering for Rural Development”: Proceedings. Vol. 24, (pp. 275–285). 21–23 May 2025. Jelgava: Latvia University of Life Sciences and Technologies. 10.22616/ERDev.2025.24.TF061">http://doi.org/10.22616/ERDev.2025.24.TF061
  15. Chaudhary, K., Bhardvaj, K., & Chaudhary, A. (2024). A Qualitative Assessment of Hydrogen Generation Techniques for Fuel Cell Applications. Fuel, 358, Part A. https://doi.org/10.1016/j.fuel.2023.130090">https://doi.org/10.1016/j.fuel.2023.130090
  16. NEL. (n.d.) Introduction to Liquid Alkaline Electrolysis. Available at: https://www.energy.gov/sites/default/files/2022-02/2-Intro-Liquid%20Alkaline%20Workshop.pdf
  17. SENZA. (n.d.). PEM Hydrogen Generator VS Alkaline Hydrogen Generator. Available at: https://senzahydrogen.com/pem-hydrogen-generator-vs-alkaline-hydrogen-generator/
  18. Stargate Hydrogen. (n.d.). Alkaline Electrolysers 101: Everything You Need to Know About the Most Reliable Hydrogen Production Technology. Available at: https://stargatehydrogen.com/blog/alkaline-electrolysers-101/
  19. Sood, S., Prakash, O., Boukerdja, M., Dieulot, J.-Y., Ould-Bouamama, B., Bressel, M., & Gehin, A.-L. (2020). Generic Dynamical Model of PEM Electrolyser under Intermittent Sources. Energies, 13 (24), 6556. https://doi.org/10.3390/en13246556">https://doi.org/10.3390/en13246556
  20. Stargate Hydrogen. (n.d.). Exploring the Basics of Hydrogen Electrolysis / Water Electrolysis. Available at: https://stargatehydrogen.com/blog/basics-of-hydrogen-electrolysis/
  21. FH2R. (n.d.). Fukushima Hydrogen Energy Research Field (F H2R). Available at: https://www.bdi.fr/wp-content/uploads/2020/03/Fukushima-Hydrogen-Energy-Research-FieldFH2R.pdf
  22. Toshiba. (n.d.). The World’s Largest-Class Hydrogen Production, Fukushima Hydrogen Energy Research Field (FH2R) now is Completed at Namie Town in Fukushima. Available at: https://www.global.toshiba/ww/news/energy/2020/03/news-20200307-01.html
  23. Thyssenkrupp Nucera. (n.d.). Industrial-Scale Water Electrolysis for Green Hydrogen Production. Available at: https://www.thyssenkrupp-nucera.com/wp-content/uploads/2023/11/thyssenkruppnucera_green-hydrogen_brochure_web.pdf
  24. Thyssenkrupp Nucera. (n.d.). Cepsa Selects Thyssenkrupp Nucera as Preferred Supplier of a 300-MW Electrolyzer for Green Hydrogen Plant in Spain. Available at: https://www.thyssenkrupp-nucera.com/cepsa-selects-thyssenkrupp-nucera-as-preferred-supplier-of-a300-mw-electrolyzerfor-green-hydrogen-plant-in-spain/
  25. ETN. (n.d.). Siemens Energy to Set Up 280 MW Electrolyzer for EWE’s Clean Hydrogen Coastline Project. Available at: https://etn.news/buzz/siemens-energy-to-set-up-280-mw-electrolyzer-for-ewes-clean-hydrogen-coastline-project
  26. Yara. (n.d.). Yara’s Renewable Hydrogen Plant in Porsgrunn, Norway. Available at: https://www.yara.com/siteassets/news-and-media/press-kit/renewable-hydrogen-plant-heroya/yaras-renewable-hydrogen-plant-fact-sheet.pdf?_gl=1*1ct2kxq*_up*MQ..*_ga*OTM2ODIzODM3LjE3NDg4OTc3OTA.*_ga_W5MJZ2GTWV*czE3NDg4OTc3OTAkbzEkZzAkdDE3NDg4OTc3OTAkajYwJGww
  27. H2E Power. (n.d.). Solid Oxide Electrolyser Cell. Available at: https://www.h2epower.net/solid-oxide-electrolyser-cell/
  28. Afroze, S., Sofri, A. N. S. B., Reza, M. S., Iskakova, Z. B., Kabyshev, A., Kuterbekov, K. A., … & Azad, A. K. (2023). Solar-Powered Water Electrolysis Using Hybrid Solid Oxide Electrolyzer Cell (SOEC) for Green Hydrogen – A Review. Energies, 16 (23), 7794. https://doi.org/10.3390/en16237794">https://doi.org/10.3390/en16237794
  29. Aravindan, M, & Praveen Kumar, G. (2023). Hydrogen towards Sustainable Transition: A Review of Production, Economic, Environmental Impact and Scaling Factors. Results in Engineering, 20. https://doi.org/10.1016/j.rineng.2023.101456">https://doi.org/10.1016/j.rineng.2023.101456
  30. GrInHy2.0. (n.d.). GrInHy2.0 – Green Industrial Hydrogen. Available at: https://salcos.salzgitter-ag.com/fileadmin/footage/MEDIA/SZAG_microsites/salcos/2022/grinhy-20/downloads/flyer/220413_GrInHy2.0_Flyer_v6.pdf
  31. Salcos. (n.d.). Green Industrial Hydrogen. Available at: https://salcos.salzgitter-ag.com/en/grinhy-20.html
  32. Ahmad, M., Hussain, F., Qazi, A., Selvaraj, J., Zainul, R., K., Abd R., … & Benti, N. E. (2024). Recent Advances in Anion Exchange Membrane Technology for Water Electrolysis: A Review of Progress and Challenges. Energy Science & Engineering. 10.1002/ese3.1938">http://doi.org/12.5328-5352.10.1002/ese3.1938
  33. Łosiewicz, B. (2024). Technology for Green Hydrogen Production: Desk Analysis. Energies, 17 (17), 4514. https://doi.org/10.3390/en17174514">https://doi.org/10.3390/en17174514
  34. Faid, A., & Sunde, S. (2022). Anion Exchange Membrane Water Electrolysis from Catalyst Design to the Membrane Electrode Assembly. Energy Technology. 10.1002/ente.202200506">http://doi.org/10.10.1002/ente.202200506
  35. Enapter. (n.d.). Hydrogen Terminal MW-scale Research Hub. Available at: https://www.enapter.com/en/application/hydrogen-terminal-mw-scale-research-hub/
  36. TUB. (n.d.). Opening and Open Day of the Hydrogen Terminal Braunschweig. Available at: https://magazin.tubraunschweig.de/en/pi-post/opening-and-open-day-of-the-hydrogen-terminal-braunschweig
  37. SIZ Energieplus. (n.d.). H2-Terminal Braunschweig. Available at: https://sizenergieplus.de/en/projects/h2-terminal-braunschweig
  38. Vibhu, V., Vinke, I. C., Eichel, R.-A., & de Haart, L. G. J. (2023). La0.6Sr0.4MnO3-Based Fuel Electrode Materials for Solid Oxide Electrolysis Cells Operating under Steam, CO2, and Co-Electrolysis Conditions. Energies, 16 (20), 7115. https://doi.org/10.3390/en16207115">https://doi.org/10.3390/en16207115
  39. Uecker, J., Unachukwu, I.D., Vibhu, V., Vinke, I.C., Eichel, R.-A., & de Haart, L.G.J. (2023). Performance, Electrochemical Process Analysis and Degradation of Gadolinium Doped Ceria as Fuel Electrode Material for Solid Oxide Electrolysis Cells. Electrochimica Acta, 452. https://doi.org/10.1016/j.electacta.2023.142320">https://doi.org/10.1016/j.electacta.2023.142320
  40. Yuan, J., Li, Z., Yuan, B., Xiao, G., Li, T., & Wang, J.-Q. (2023). Optimization of High-Temperature Electrolysis System for Hydrogen Production Considering High-Temperature Degradation. Energies, 16 (6), 2616. https://doi.org/10.3390/en16062616">https://doi.org/10.3390/en16062616
  41. Wolf, S. E., Vibhu, V., Tröster, E., Vinke, I. C., Eichel, R.-A., & de Haart, L. G. J. (2022). Steam Electrolysis vs. Co-Electrolysis: Mechanistic Studies of Long-Term Solid Oxide Electrolysis Cells. Energies, 15 (15), 5449. https://doi.org/10.3390/en15155449">https://doi.org/10.3390/en15155449
  42. López-Fernández, E., Sacedón, C. G., Gil-Rostra, J., Yubero, F., González-Elipe, A. R., & de Lucas-Consuegra, A. (2021). Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing. Molecules, 26 (21), 6326. https://doi.org/10.3390/molecules26216326">https://doi.org/10.3390/molecules26216326
  43. Noor Azam, A. M. I., Li, N. K., Zulkefli, N. N., Masdar, M. S., Majlan, E. H., Baharuddin, N. A., … & Shaffee, S. N. A. (2023). Parametric Study and Electrocatalyst of Polymer Electrolyte Membrane (PEM) Electrolysis Performance. Polymers, 15 (3), 560. https://doi.org/10.3390/polym15030560">https://doi.org/10.3390/polym15030560
  44. Pérez-Viramontes, N. J., Collins-Martínez, V. H., Escalante-García, I. L., Flores-Hernández, J. R., Galván-Valencia, M., & Durón-Torres, S. M. (2020). Ir-Sn-Sb-O Electrocatalyst for Oxygen Evolution Reaction: Physicochemical Characterization and Performance in Water Electrolysis Single Cell with Solid Polymer Electrolyte. Catalysts, 10 (5), 524. https://doi.org/10.3390/catal10050524">https://doi.org/10.3390/catal10050524
DOI: https://doi.org/10.2478/lpts-2025-0039 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 87 - 108
Published on: Oct 7, 2025
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2025 D. Kronkalns, L. Zemite, L. Jansons, A. Backurs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.