Have a personal or library account? Click to login

Phase Retrieval Approach for Transmission Matrix Identification in Polytetrafluoroethylene (PTFE)

Open Access
|Oct 2025

References

  1. Anderson, P. W. (1958). Absence of Diffusion in Certain Random Lattices. Physical Review, 109 (5), 1492–1505.
  2. Wolf, P. E., Maret, G., Akkermans, E., & Maynard, R. (1988). Optical Coherent Backscattering by Random Media: An Experimental Study. Journal de Physique (Paris), 49 (1), 63–75.
  3. Vanneste, C., Sebbah, P., & Cao, H. (2007). Lasing with Resonant Feedback in Weakly Scattering Random Systems. Physical Review Letters, 98 (14), 143902.
  4. Leith, E. N., & Upatnieks, J. (1968). Imagery with Pseudo-Randomly Diffused Coherent Illumination. Applied Optics, 7(10), 2085–2089.
  5. Dorokhov, O. N. (1984). On the Coexistence of Localized and Extended Electronic States in the Metallic Phase. Solid State Communications, 51 (6), 381–384.
  6. Vellekoop, I. M., & Mosk, A. P. (2007). Focusing Coherent Light through Opaque Strongly Scattering Media. Optics Letters, 32 (16), 2309–2311.
  7. Mosk, A. P., Lagendijk, A., Lerosey, G., & Fink, M. (2012). Controlling Waves in Space and Time for Imaging and Focusing in Complex Media. Nature Photonics, 6 (5), 283–292.
  8. Bertolotti, J., van Putten, E. G., Blum, C., Lagendijk, A., Vos, W. L., & Mosk, A. P. (2012). Non-invasive Imaging through Opaque Scattering Layers. Nature, 491 (7423), 232–234.
  9. Boniface, A., Dong, J., & Gigan, S. (2020). Non-invasive Focusing and Imaging in Scattering Media with a Fluorescence-Based Transmission Matrix. Nature Communications, 11, 6154.
  10. Katz, O., Small, E., & Silberberg, Y. (2012). Looking around Corners and through Thin Turbid Layers in Real Time with Scattered Incoherent Light. Nature Photonics, 6 (8), 549–553.
  11. Popoff, S. M., Lerosey, G., Fink, M., Boccara, A. C., & Gigan, S. (2010). Image Transmission through an Opaque Material. Nature Communications, 1 (6), 81.
  12. Choi, Y., Yang, T. D., Fang-Yen, C., Kang, P., Lee, K. J., Dasari, R. R., … & Choi, W. (2011). Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium. Physical Review Letters, 107 (2), 023902.
  13. Popoff, S. M., Lerosey, G., Carminati, R., Fink, M., Boccara, A. C., & Gigan, S. (2010). Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media. Physical Review Letters, 104 (10), 100601.
  14. Xu, X., Liu, H., & Wang, L. V. (2011). Time-Reversed Ultrasonically Encoded Optical Focusing into Scattering Media. Nature Photonics, 5 (3), 154–157.
  15. Judkewitz, B., Wang, Y. M., Horstmeyer, R., Mathy, A., & Yang, C. (2013). Speckle-Scale Focusing in the Diffusive Regime with Time-Reversal of Variance-Encoded Light (TROVE). Nature Photonics, 7 (4), 300–305.
  16. Katz, O., Small, E., Bromberg, Y., & Silberberg, Y. (2011). Focusing and Compression of Ultrashort Pulses through Scattering Media. Nature Photonics, 5 (6), 372–377.
  17. Vellekoop, I. M., Lagendijk, A., & Mosk, A. P. (2010). Exploiting Disorder for Perfect Focusing. Nature Photonics, 4, 320–322.
  18. Zhao, S., Rauer, B., Valzania, L., Dong, J., Liu, R., Li, F., … & de Agular, H. B. (2024). Single-Pixel Transmission Matrix Recovery via Two-Photon Fluorescence. Science Advances, 10, eadi3442. https://doi.org/10.1126/sciadv.adi3442
  19. Popoff, S. M., Lerosey, G., Fink, M., Boccara, A. C., & Gigan, S. (2010). Image Transmission through an Opaque Material. Nature Communications, 1, 81.
  20. Yaqoob, Z., Psaltis, D., Feld, M. S., & Yang, C. (2008). Optical Phase Conjugation for Turbidity Suppression in Biological Samples. Nature Photonics, 2, 110–115.
  21. Schott, S., Bertolotti, J., Leger, J.-F., Bordieu, L., & Gigan, S. (2015). Characterization of the Angular Memory Effect of Scattered Light in Biological Tissues. Optics Express, 23 (10), 13505–13516.
  22. Popoff, S. M., Lerosey, G., Carminati, R., Fink, M., Boccara, A. C., & Gigan, S. (2010). Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media. Physical Review Letters, 104, 100601.
  23. Seaberg, M. H., d’Aspremont, A., & Turner, J. J. (2015). Coherent Diffractive Imaging Using Randomly Coded Masks. Applied Physics Letters, 107, 231103. https://doi.org/10.1063/1.4937122
  24. Dremeau, A., Liutkus, A., Martina, D., Katz, O., Schülke, C., Krzakala, F., … & Daudet, L. (2015). Reference-less Measurement of the Transmission Matrix of a Highly Scattering Material Using a DMD and Phase Retrieval Techniques. Optics Express, 23 (9), 11898–11911.
  25. Waldspurger, I., d’Aspremont, A., & Mallat, S. (2015). Phase Recovery, MaxCut and Semidefinite Programming. Mathematical Programming, Series A, 149, 47–81.
  26. Fienup, J. R. (1982). Phase Retrieval Algorithms: A Comparison. Applied Optics, 21, 2758–2769.
  27. Jaganathan, K., Eldar, Y. C., & Hassibi, B. (2015). Phase retrieval with masks using convex optimization. In Proceedings of the IEEE International Symposium on Information Theory (pp. 1655–1659).
  28. Candès, E., Strohmer, T., & Voroninski, V. (2013). Phaselift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming. Communications in Pure and Applied Mathematics, 66, 1241–1274.
  29. Candès, E. J., Li, X., & Soltanolkotabi, M. (2015). Phase Retrieval via Wirtinger Flow: Theory and Algorithms. IEEE Transactions on Information Theory, 61 (4), 1985–2007.
  30. Wu, F., & Rebechini, P. (2021). Hadamard Wirtinger flow for sparse phase retrieval. In: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS), PMLR: Volume 130.
  31. Jaganathan, K., Oymak, S., & Hassibi, B. (2017). Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms. IEEE Transactions on Signal Processing, 65 (9), 2402–2410.
  32. Barbastathis, G., Ozcan, A., & Situ, G. (2019). On the Use of Deep Learning for Computational Imaging. Optica, 6, 921–943.
  33. Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., & Ozcan, A. (2018). Phase Recovery and Holographic Image Reconstruction Using Deep Learning in Neural Networks. Light: Science & Applications, 7, 17141. https://doi.org/10.1038/lsa.2017.141
  34. Wang, K., Song, L., Wang, C., Ren, Z., Zhao, G., Dou, J., … & Lam, E. Y. (2024). On the Use of Deep Learning for Phase Recovery. Light: Science & Applications, 13, 4. https://doi.org/10.1038/s41377-023-01340-x
  35. Karitāns, V., Fomins, S., & Santosa, A. (2023). FPGA-Based Real-Time Optical Wavefront Shaping Using a Segmented Deformable Mirror. Photonics, 12 (8), 740.
DOI: https://doi.org/10.2478/lpts-2025-0037 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 58 - 66
Published on: Oct 7, 2025
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2025 A. Santosa, S. Fomins, V. Karitāns, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.