Have a personal or library account? Click to login
Heteremolecular Structure Formation in Binary Solutions of Dimethylformamide-Water and Tetrahydrofuran-Water: Ftir and Refractometry Cover

Heteremolecular Structure Formation in Binary Solutions of Dimethylformamide-Water and Tetrahydrofuran-Water: Ftir and Refractometry

Open Access
|Jul 2025

References

  1. Esmonde-White, K., Lewis, M., & Lewis, I. R. (2022). Direct Measurement of Chocolate Components Using Dispersive Raman Spectroscopy at 1000 nm Excitation. Applied Spectroscopy, 77 (3), 320–326.
  2. Escoriza, M. F., Vanbriesen, J. M., Stewart, S., & Maier, J. (2006). Studying Bacterial Metabolic States Using Raman Spectroscopy. Applied Spectroscopy, 60 (9), 971–976.
  3. Xu, Y., Zhu, D., Song, Y., Zheng, X., & You, X. (2006). Hydrothermal Synthesis and Crystal Structure of the Novel Mixed Mo/V Meta-l-Oxygen Cluster Compound [Co(C2N2H8)(3)](4)[(Mo2Mo14V16O80)-Mo-V-V-VI-O-IV (PO4)(2)]Center Dot 10H(2)O Containing the Two Types of Typical Heteropoly Anions. The Journal of Molecular Structure, 782 (2), 165–170.
  4. Sharma, A., Kaur, S., Mahajan C. G., Tripathi, S. K., & Saini, S. S. G. (2007). Fourier Transform Infrared Spectral Study of N, N′-Dimethylformamide-Water-Rhodamine 6G Mixture. Molecular Physics, 105 (1), 117–123.
  5. Kanan, P. P., Arivazhagan, G., Sangeetha, T., Karthick, N. K., & Kumbharkhane A. C. (2021). FTIR Studies, DFT Calculations, and Time Domain Reflectometry Studies on TGF-Methanol Binary Solutions. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 248, 119289.
  6. Dwivedi, A., Baboo, V., & Bajpai. A. (2015). Fukui Function Analysis and Optical, Electronic, and Vibrational Properties of Tetrahydrofuran and Its Derivatives: A Complete Quantum Chemical Study. Journal of Theoretical Chemistry, 345234.
  7. Ohashi, K., & Takeshita, H., (2021). Infrared Spectroscopic and Computational Studies of Co (ClO4)2 Dissolved in N, N-Dimethylformamide. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 248, 119289.
  8. Chalapathi, V. V., & Ramiah. K. V. (1966). Normal Vibrations of N, N-Dimethylformamide and N, N-Dimethylacetamide. Proc. lnd. Acad. Sci, 64, 148.
  9. Tomar, D., Rana, B., & Jena. K. C. (2020). The Structure of Water–DMF Binary Mixtures Probed by Linear and Nonlinear Vibrational Spectroscopy. Journal of Chemical Physics, 152 (11), 114707.
  10. Xu, Z., Li, H., Wang, C., Pan, H., & Han. S. (2006). The Methyl C–H Blueshift in N, N-Dimethylformamide-Water Mixtures Probed by Two-Dimensional Fourier-Transform Infrared Spectroscopy. Journal of Chemical Physics, 124 (24), 244502.
  11. Biliškov, N., & Baranović, G. (2009). Infrared Spectroscopy of Liquid Water–N, N-Dimethylformamide Mixtures. The Journal of Molecular Liquids, 144 (3), 155–162.
  12. Martínez-Reina, M., Amado-González, E., & Goméz-Jaramillo, W. (2015). Experimental Study and Modeling of the Refractive Indices in Binary and Ternary Mixtures of Water with Methanol, Ethanol and Propan-1-ol at 293.15 K. Journal of Solution Chemistry, 44 (2), 206–222.
  13. Gofurov, Sh., Makhmanov, U., Kokhkharov, A., & Ismailova, O. B. (2019). Structural and Optical Characteristics of Aqueous Solutions of Acetic Acid. Applied Spectroscopy, 73 (5), 503–510.
  14. Tomikawa, K., Kanno, H., & Kimoto, H. (2004). A Raman Study of Aqueous DMF and DMA Solutions at Low Temperatures. Canadian Journal of Chemistry, 82 (10), 1468–1473.
  15. Pansare, K., Singh, S. R., Chakravarthy, V., Gupta, N., Hole, A., Gera, P., … & Krishna. C. M. (2020). EXPRESS: Raman Spectroscopy: An Exploratory Study to Identify Post-Radiation Cell Survival. Applied Spectroscopy, 74 (5), 000370282090835.
  16. Bozorova, D. T., Gofurov, Sh. P., Kokhkharov. A. M., & Ismailova O. B. (2021). Terahertz Spectroscopy of Aqueous Solutions of Acetic Acid. Journal of Applied Spectroscopy, 88 (4), 719–722.
  17. Globus, T. R., Woolard, D. L., Khromova, T., Crowe, T. W., Bykhovskaia, M., Gelmont, B. L., … & Samuels, A.C. (2003). THz-Spectroscopy of Biological Molecules. Journal of Biological Physics, 29, 89–100.
  18. Ye, P., Meng, Q., Wang, G., Huang, H., Yang, Y., Su, B., & Zhang, C. (2022). Terahertz Spectroscopic Detection of Amino Acid Molecules under Magnetic Field. Heliyon., 8 (11), 11414.
  19. Wei, L., Yu, L., Jiaoqi, H., Guorong, H., Yang, Zh., & Weiling. F. (2018). Application of Terahertz Spectroscopy in Biomolecule Detection. Frontiers in Laboratory Medicine, 2 (1), 127–133.
  20. Lee. Y. S. (2009).Terahertz Spectroscopy of Atoms and Molecules. Principles of Terahertz Science and Technology. Springer, Boston, MA.
  21. Mathlouthi, M. (1981). X-ray Diffraction Study of the Molecular Association in Aqueous Solutions of d-Fructose, d-Glucose, and Sucrose. Carbohydrate Research, 91 (2), 113–123.
  22. Kruh, R. F., & Standley, C. L. (1962). An X-Ray Diffraction Study of Aqueous Zinc Chloride Solutions. Inorganic Chemisty, 1 (4), 941–943.
  23. Adams, R., Balyuzi, H. H. M., & Burge, R. E. (1977). X-Ray Diffraction Studies of Aqueous Solutions of Urea. J. Appl. Cryst., 10, 256–261.
  24. Gioacchino, M. Di., Bruni, F., & Ricci, M. A. (2019). N-Methylacetamide Aqueous Solutions: A Neutron Diffraction Study. J. Phys. Chem. B. 123 (8), 1808–1814.
  25. Kameda, Y., & Uemura, O. (1993). Neutron Diffraction Study on the Structure of Highly Concentrated Aqueous LiBr Solutions. Bulletin of the Chemical Society of Japan, 66 (2), 384–389.
  26. Ender, J. E. (1980). Neutron Diffraction, Isotopic Substitution and the Structure of Aqueous Solutions. Phil. Trans R. Soc. London. B, Biological Sciences, 290, 553–566.
  27. Yamaguchi, T., Yoshida, K., Machida, Sh., & Hattori, T. (2022). Neutron Scattering on an Aqueous Sodium Chloride Solution in the Gigapascal Pressure Range. The Journal of Molecular Liquids, 365 (1), 120181.
  28. Soper, A. K., Neilson, G. W., Enderby, J. E., & Howe, R. A. (1977). A Neutron Diffraction Study of Hydration Effects in Aqueous Solutions. Journal of Physics C: Solid State Physics, 10, 1793.
  29. Takahashi, H., Oue, T., & Sakai, M. (2020). Resonance IR Spectroscopy in Aqueous Solution by Combining IR Super-Resolution with TFD-IR Method. Chemical Physics Letters, 758, 137942.
  30. Rabenstein, D. L., & Fan, S. (1986). Proton Nuclear Magnetic Resonance Spectroscopy of Aqueous Solutions: Complete Elimination of the Water Resonance by Spin-Spin Relaxation. Analytical Chemistry, 58 (14), 3178–3184.
  31. Martin, A., Nicholas, P., & Wasylishen, R. E. (1987). A Nuclear Magnetic Resonance Study of Aqueous Solutions of Several Nitrate Salts. The Canadian Journal of Chemistry, 65 (5), 951–956.
  32. Kokhkharov, A. M., Zakhidov, E. A., Gofurov, Sh. P., Bakhramov, S. A., & Makhmanov, U. K. (2013). Clusterization of Fullerene C70 Molecules in Solutions and Its Influence to Optical and Nonlinear Optical Properties of Solutions. International Journal of Nanoscience, 12 (4), 1350027.
  33. Patel, R. B., Stepanov, V., & Qiu, H. (2016). Dependence of Raman Spectral Intensity on Crystal Size in Organic Nano Energetics. Applied Spectroscopy, 70 (8), 1339–1345.
  34. Plastinin, I. V., Burikov, S. A., Gofurov, Sh. P., Ismailova, O. B., Mirgorod, Y., & Dolenko, T. A. (2020). Features of Self-Organization of Sodium Dodecyl-Sulfate in Water-Ethanol solutions: Theory and Vibrational Spectroscopy. Journal of Molecular Liquids, 298, 112053.
  35. Cholli, A. L., & Lau, M. L. (1989). Simultaneous Detection of Optical Isomers and the Separation of Overlapping Resonances in a 1H NMR Spectrum of (+/-)-2,2-Dimethyl-1-Phenyl-1-Propanol Using an NMR Shift Reagent. Applied Spectroscopy, 43 (7), 1168–1172.
  36. Ismailova, O. B., Akhmedov, T. Kh., Igamberdiev, Kh. T., Mamatkulov, S. I., Saidov, A. A., Tursunov, S. O., & Khabibullaev, P.K. (2005). Heat-Capacity Anomaly in a Wide Vicinity of the Critical Point of the Triethylamine-Water Phase Transition. Journal of Engineering Physics and Thermophysics, 78 (5), 1040–1045.
  37. Larive, C. K., Jayawickrama, D., & Orfi, L. (1997). Quantitative Analysis of Peptides with NMR Spectroscopy. Applied Spectroscopy, 51 (10), 1531–1536.
  38. Flores-Castañeda, M., & Camacho-Lopez, S. (2023). Si Nanoparticle Decorated Bi2O2CO3 2D Nanocomposite Synthesized by Femtosecond Laser Ablation of Solids in Liquids and Aging. Optics and Laser Technology, 158, 108891.
  39. Xu, Y., Zhu, D., Song, Y., Zheng, X., & You, X. (2006). Hydrothermal Synthesis and Crystal Structure of the Novel Mixed Mo/V Meta-l-Oxygen Cluster Compound [Co(C2N2H8)(3)](4)[(Mo2Mo14V16O80)-Mo-V-V-VI-O-IV (PO4)(2)]Center Dot 10H(2)O Containing the Two Types of Typical Heteropoly Anions. The Journal of Molecular Structure, 782 (2), 165–170.
  40. Mizuno, K. (2009). Roles of the Ether Oxygen in Hydration of TGF studied by IR, NMR and DFT Calculation Methods. Journal of Physical Chemistry B, 113 (4), 906–915.
  41. Weisenberger, L. A., & Koenig, J. L. (1989). NMR Imaging of Solvent Diffusion in Polymers. Applied Spectroscopy, 43 (7), 1117–1126.
  42. Davies, A. N., & Lampen, P. (1993). JCAMPDX for NMR. Applied Spectroscopy, 47 (8), 1093–1099.
  43. Fischer, J. W., Merwin, L. H., & Nissan, R. A. (1995). NMR Investigation of the Thermolysis of Citric Acid. Applied Spectroscopy, 49 (1), 120–126.
  44. Larive, C. K., Jayawickrama, D., & Orfi, L. (1997) Quantitative Analysis of Peptides with NMR Spectroscopy. Applied Spectroscopy, 51 (10), 1531–1536.
  45. Shastri, A., Das, A. K., Krishnakumar, S., Singh, P. J., & Raja Sekhar, B. N. (2017). Spectroscopy of N, N-dimethylformamide in the VUV and IR Regions: Experimental and Computational Studies. Journal of Chemical Physics, 147 (22), 224305.
  46. Mao, J. X., Walsh, P., Kroll, P., & Schug, K. A. (2019). Simulation of Vacuum Ultraviolet Absorption Spectra: Paraffin, Isoparaffin, Olefin, Naphthene, and Aromatic Hydrocarbon Class Compounds. Applied Spectroscopy, 74 (2), 72–80.
  47. Cruse, C., Pu, J., & Goodpaster, J. V. (2020). EXPRESS: Identifying Thermal Decomposition Products of Nitrate Ester Explosives Using Gas Chromatography– Vacuum Ultraviolet Spectroscopy: An Experimental and Computational Study. Applied Spectroscopy, 74 (12), 1486–1495.
  48. Heravi, M. M., Ghavidel, M., & Mohammadkhan, L. (2018). Beyond a Solvent: Triple Roles of Dimethylformamide in Organic Chemistry. RSC Adv., 8 (49), 27832–27862.
  49. Muzart, J. (2009). N, N-Dimethylformamide: Much More than a Solvent. Tetrahedron, 65 (40), 8313–8323.
  50. Zhu, Y., Yang, J., Mei, F., Li, X., & Zhao, Ch. 2022). Bio-Based 1,4-Butanediol and Tetrahydrofuran Synthesis: Perspective. Green Chemistry, 24, 6450–6466.
  51. Angle, S. R., & El-Said, N. A. (2002). Stereoselective Synthesis of Tetrahydrofurans via Formal [3+2]-Cycloaddition of Aldehydes and Allylsilanes. Formal Total Synthesis of the Muscarine Alkaloids (−)-Allomuscarine and (+)-Epimuscarin. Journal of the American Chemical Society, 124 (14), 3608–3613.
  52. Sałdyka, M., Mielke, Z., & Haupa, K. (2018). Structural and Spectroscopic Characterization of DMF Complexes with Nitrogen, Carbon Dioxide, Ammonia and Water. Infrared Matrix Isolation and Theoretical Studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 190, 423–432.
  53. Shastri, A., Das, A. K., Krishnakum, S., Singh, P. J., & Sekhar, B. N. R. (2017). Spectroscopy of N, N-Dimethylformamide in the VUV and IR Regions: Experimental and Computational Studies. The Journal of Chemical Physics, 147, 224305.
  54. Liu, B., & Bazan, G. C. (2007). Tetrahydrofuran Activates Fluorescence Resonant Energy Transfer from a Cationic Conjugated Polyelectrolyte to Fluorescein-Labeled DNA in Aqueous Media. Chemistry: An Asian Journal, 2 (4), 499–504.
  55. Nawrocki, P. R., & Sørensen, T. J. (2023). Optical Spectroscopy as a Tool for Studying the Solution Chemistry of Neodymium (iii). Physical Chemistry Chemical Physics, 25, 19300–19336.
  56. Reszka, K., Kolodziejczyk, P., & Lown, J. W. (1988). Photosensitization by Antitumor Agents. 5. Daunorubicin-Photosensitized Oxidation of NAD (P)H in Aqueous and N, N-Dimethylformamide/Aqueous Solutions – An Electron Paramagnetic Resonance Study. Free Radical Biology and Medicine, 5 (2), 63–70.
  57. Hunold, J., Eisermann, J., Brehm, M., & Hinderberger, D. (2020). Characterization of Aqueous Lower-Polarity Solvation Shells Around Amphiphilic 2,2,6,6-Tetramethylpiperidine-1-oxyl Radicals in Water. Journal of Physical Chemistry B, 124 (39), 8601–8609.
  58. Dembek, M., & Bocian, S. (2020). Pure Water as a Mobile Phase in Liquid Chromatography Techniques. Trends in Analytical Chemistry, 123, 115793.
  59. Clifford, M. J., & Eastwood, D. (2004). Design of a Novel Passive Solar Tracker. Solar Energy, 77 (3), 269–280.
  60. Sanganal, S. K., Kulkarni, G. B., & Karegoudar, T. B. (2013). Development and Validation of High Perfomance Liquid Chromatographic Analysis of Residual N, N-Dimethylformamide in Spent Medium after Biodegradation by Paracoccus denitrificans SD1. ISRN Chromatography 2013, 1–6.
  61. Góra, R., Hutta, M., & Rohárik, P. (2012). Characterization and Analysis of Soil Humic Acids by Off-Line Combination of Wide-Pore Octadecylsilica Column Reverse Phase High Performance Liquid Chromatography with Narrow Bore Column Size-Exclusion Chromatography and Fluorescence Detection. Journal of Chromatography A, 1220, 44–49.
  62. Aliaj, F., Bytyqi-Damoni, A., & Syla, N. (2016). Density and Refractive Index Study of the Ternary System Benzene-Ethanol-Hexane. AIP Conference Proceedings, 1722, 290015.
  63. Moosavi, M., & Rostami, A. A. (2016). Densities, Viscosities, Refractive Indices, and Excess Properties of Aqueous 1,2-Etanediol, 1,3-Propanediol, 1,4-Butanediol, and 1,5-Pentanediol Binary Mixtures. Journal of Chemical & Engineering Data, 62 (1), 156–168.
  64. El-Dossoki, F. I. (2007). Refractive Index and Density Measurements for Selected Binary Protic-Protic, Aprotic-Aprotic, and Aprotic-Protic Systems at Temperatures from 298.15 K to 308.15 K. JCCS, 54 (5), 1129–1137.
  65. Mohammadi, L., & Omrani, A. (2017). Density, Refractive Index, and Excess Properties of Sulfolane and Alkanediols Binary Mixtures at Different Temperatures. Journal of Thermal Analysis and Calorimetry, 131 (3).
  66. Komudzińska, M., Tyczyńska, M., Jóźwiak, M., Burakowski, A., & Gliński, J. (2020). Volumetric, Acoustic and Thermal Properties of Aqueous N, N-Dimethylformamide System. Effect of Temperature and Composition. Journal of Molecular Liquids, 300, 112321.
  67. Nayak, J. N., Aralaguppi, M. I., Kumar Naidu, B. V., & Aminabhavi, T. M. (2004). Thermodynamic Properties of Water + Tetrahydrofuran and Water + 1,4-Dioxane Mixtures at (303.15, 313.15, and 323.15) K. Journal of Chemical & Engineering Data, 49 (3), 468–474.
  68. Razzokov, D., Ismailova, O. B., Mamatkulov, Sh. I., Trunilina, O. V., & Kokhkharov, A. M. (2014). Heteromolecular Structures in Aqueous Solutions of Dimethylformamide and Tetrahydrofuran, According to Molecular Dynamics Data. Russian Journal of Physical Chemistry A, 88, 1500–1506.
  69. Katayama, M., & Ozutsumi, K. (2008). The Number of Water-Water Hydrogen Bonds in Water-Tetrahydrofuran and Water-Acetone Binary Mixtures Determined by Means of X-Ray Scattering. Journal of Solution Chemistry, 37 (6), 841–856.
  70. Jones, G., & Talley, S. K. (1933). The Viscosity of Aqueous Solutions as a Function of the Concentration. Journal of the American Chemical Society, 55 (2), 624–642.
  71. Sharma, A., Kaur, S., Mahajan, C. G., Tripathi, S. K., & Saini, S. S. G. (2007). Fourier Transform Infrared Spectral Study of N, N′-Dimethylformamide-Water-Rhodamine 6G Mixture. Molecular Physics, 105 (1), 117–123.
  72. Tomikawa, K., Kanno, H., & Kimoto, H. (2004). A Raman Study of Aqueous DMF and DMA Solutions at Low Temperatures. Canadian Journal of Chemistry, 82 (10), 1468–1473.
  73. Gogolinskaya, T. A., Patsaeva, S. V., & Fadeev, V. V. (1986). On the Regularities of Change of the 3100–3700 см−1 Band of Water Raman Scattering in Salt Aqueous Solutions. Doklady Akademii Nauk, 290 (5), 1099–1103.
  74. Cilense, M., Benedetti, A. V., & Vollet, D. R. (1983). Thermodynamic Properties of Liquid Mixtures. II. Dimethylformamide-Water. Thermochima Acta, 63 (2), 151–156.
  75. Burikov, S., Dolenko, T., Patsaeva, S., Starokurov, Y., & Yuzhakov, V. (2010). Raman and IR Spectroscopy Research on Hydrogen Bonding in Water-Ethanol Systems. Molecular Physics, 108 (18), 2427–2436.
  76. Yang, B., Lang, H., Liu, Z., Wang, S., Men, Z., & Sun, C. (2021). Three Stages of Hydrogen Bonding Network in DMF-Water Binary Solution. Journal of Molecular Liquids, 324, 114996.
DOI: https://doi.org/10.2478/lpts-2025-0026 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 14 - 28
Published on: Jul 29, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 D. Bozorova, S. Gofurov, M. Ziyayev, A. Kokhkharov, Z. Kadirova, O. Abdiraimova, O. Ismailova, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.