Yuce, E., & Minaei, S. (2024). <em>Passive and Active Circuits by Example</em>. Springer Nature, Switzerland. DOI:<a href="https://doi.org/10.1007/978-3-031-44966-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-031-44966-6</a>
Manturshettar, S. V., & Sunita, M. S. (2019). A low noise low power operational transconductance amplifier for biomedical applications. In <em>2019 IEEE 16th India Council International Conference (INDICON), IEEE</em>, (pp. 1–4). DOI:<a href="https://doi.org/10.1109/INDICON47234.2019.9030285" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/INDICON47234.2019.9030285</a>
Almalah, N. T., & Aldabbagh, F. H. (2022). Inductanceless High Order Low Frequency Filters for Medical Applications. <em>International Journal of Electrical and Computer Engineering, 12,</em> 1299–1307. DOI:<a href="https://doi.org/10.11591/ijece.v12i2.pp1299-1307" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.11591/ijece.v12i2.pp1299-1307</a>
Sharma, D., & Nath, V. (2024). CMOS Operational Amplifier Design for Industrial and Biopotential Applications: Comprehensive Review and Circuit Implementation. <em>Results in Engineering, 22</em>, 102357. DOI:<a href="https://doi.org/10.1016/j.rineng.2024.102357" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.rineng.2024.102357</a>
Hussein, Z. S., & Motlak, H. J. (2024). Design Methodology for a Low-Power Two-Stage CMOS Operational Amplifier for Optical Receiver Applications. <em>Journal Europeen des Syst</em><em>´</em><em>emes Automatis</em><em>‘</em><em>es, 57</em>, 815–822. DOI:<a href="https://doi.org/10.18280/jesa.570320" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.18280/jesa.570320</a>
Bowers, D., & Wurcer, S. (1999). Recent developments in bipolar operational amplifiers. In Proceedings of the 1999 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.99CH37024), IEEE, (pp. 38–45). DOI:<a href="https://doi.org/10.1109/BIPOL.1999.803521" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/BIPOL.1999.803521</a>
Rodovalho, L. H., Rodrigues, C. R., & Aiello, O. (2023). Rail-to-Rail Input/Output Bulk Driven Class AB Operational Amplifier with Improved Composite Transistors. <em>Analog Integrated Circuits and Signal Processing, 115</em>, 279–291. DOI:<a href="https://doi.org/10.1007/s10470-023-02160-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10470-023-02160-0</a>
Menberu, T. (2023). Analysis and Comparison of Two Stage and Single Stage Operational Amplifiers Using 0.18 µm Technology. <em>American Journal of Physics and Applications, 10</em>, 72. DOI:<a href="https://doi.org/10.11648/j.ajpa.20221006.11" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.11648/j.ajpa.20221006.11</a>
Agostinho, P. R., Goncalez, O. L., & Wirth, G. (2016). Rail to Rail Radiation Hardened Operational Amplifier in Standard CMOS Technology with Standard Layout Techniques. <em>Microelectronics Reliability, 67,</em> 99–103. DOI:<a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> microrel.2016.11.001
Kostrichkin, D., Rudenko, S., Lapkis, M, & Atvars, A. (2022). Development of Electric Scheme for 4-Channel Low Noise Rail-to-Rail Operational Amplifier aRD824 Based on AD824 Prototype. <em>Engineering for Rural Development, 21</em>, 962–968. DOI:<a href="https://doi.org/10.22616/ERDev.2022.21.TF317" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.22616/ERDev.2022.21.TF317</a>
Kostrichkin, D., Rudenko, S., Lapkis, M., & Atvars, A. (2022). Simulation and Test Results of 4-Channel Low Noise Rail-to-Rail Operational Amplifier aRD824 Based on AD824 Prototype. <em>Engineering for Rural Development, 21,</em> 969–977. DOI:<a href="https://doi.org/10.22616/ERDev.2022.21.TF318" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.22616/ERDev.2022.21.TF318</a>
Analog devices, Inc. (2011). <em>Data Sheet. AD820: Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp Data Sheet.</em> Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.analog.com/media/en/technical-documentation/data-sheets/AD820.pdf">https://www.analog.com/media/en/technical-documentation/data-sheets/AD820.pdf</ext-link>
Qian, M., & Wang, D. (2005). A Precision Physical Model for Three Terminal Diffused or Ion-Implanted Resistors. <em>Solid-State Electronics, 49</em>, 323–327. DOI:<a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> sse.2004.11.002