Have a personal or library account? Click to login
Redesign of the AD820 Single-Channel Circuit for the Development of the ARD820 Low-Noise Rail-to-Rail Operational Amplifier Cover

Redesign of the AD820 Single-Channel Circuit for the Development of the ARD820 Low-Noise Rail-to-Rail Operational Amplifier

Open Access
|May 2025

References

  1. Horowitz, P., &amp; Hill, W. (2015). <em>The Art of Electronics</em>. Cambridge University Press.
  2. Huijsing, J. (2017). <em>Operational Amplifiers. Theory and Design</em> (3rd ed.). Springer International Publishing.
  3. Franco, S. (2015). <em>Design with Operational Amplifiers and Analog Integrated Circuits</em> (4th ed.). McGraw-Hill Education,.
  4. Jung, W. (2005). <em>Op Amp Applications Handbook</em>. Elsevier.
  5. Yuce, E., &amp; Minaei, S. (2024). <em>Passive and Active Circuits by Example</em>. Springer Nature, Switzerland. DOI:<a href="https://doi.org/10.1007/978-3-031-44966-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-031-44966-6</a>
  6. Manturshettar, S. V., &amp; Sunita, M. S. (2019). A low noise low power operational transconductance amplifier for biomedical applications. In <em>2019 IEEE 16th India Council International Conference (INDICON), IEEE</em>, (pp. 1–4). DOI:<a href="https://doi.org/10.1109/INDICON47234.2019.9030285" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/INDICON47234.2019.9030285</a>
  7. Almalah, N. T., &amp; Aldabbagh, F. H. (2022). Inductanceless High Order Low Frequency Filters for Medical Applications. <em>International Journal of Electrical and Computer Engineering, 12,</em> 1299–1307. DOI:<a href="https://doi.org/10.11591/ijece.v12i2.pp1299-1307" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.11591/ijece.v12i2.pp1299-1307</a>
  8. Sharma, D., &amp; Nath, V. (2024). CMOS Operational Amplifier Design for Industrial and Biopotential Applications: Comprehensive Review and Circuit Implementation. <em>Results in Engineering, 22</em>, 102357. DOI:<a href="https://doi.org/10.1016/j.rineng.2024.102357" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.rineng.2024.102357</a>
  9. Hussein, Z. S., &amp; Motlak, H. J. (2024). Design Methodology for a Low-Power Two-Stage CMOS Operational Amplifier for Optical Receiver Applications. <em>Journal Europeen des Syst</em><em>´</em><em>emes Automatis</em><em>‘</em><em>es, 57</em>, 815–822. DOI:<a href="https://doi.org/10.18280/jesa.570320" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.18280/jesa.570320</a>
  10. Malhi, S., Salama, C., &amp; Donnison, W. (1981). A Low-Voltage Micropower JFET/Bipolar Operational Amplifier. <em>IEEE Journal of Solid-State Circuits 16,</em> 669–676. DOI:<a href="https://doi.org/10.1109/JSSC.1981.1051660" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/JSSC.1981.1051660</a>
  11. Bowers, D., &amp; Wurcer, S. (1999). Recent developments in bipolar operational amplifiers. In Proceedings of the 1999 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.99CH37024), IEEE, (pp. 38–45). DOI:<a href="https://doi.org/10.1109/BIPOL.1999.803521" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/BIPOL.1999.803521</a>
  12. Huijsing, J., &amp; Linebarger, D. (1985). Low-Voltage Operational Amplifier with Rail-to-Rail Input and Output Ranges. <em>IEEE Journal of Solid-State Circuits, 20</em>, 1144–1150. DOI:<a href="https://doi.org/10.1109/JSSC.1985.1052452" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/JSSC.1985.1052452</a>
  13. Wang, C.-C., Tsai, T.-Y., Lu, W.-J., Chen, C.-L., &amp; Wu, Y.-L. (2015). A 30 V Rail-to-Rail Operational Amplifier. <em>Microelectronics Journal, 46</em>, 911–915. DOI:<a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> mejo.2015.06.015
  14. Rodovalho, L. H., Rodrigues, C. R., &amp; Aiello, O. (2023). Rail-to-Rail Input/Output Bulk Driven Class AB Operational Amplifier with Improved Composite Transistors. <em>Analog Integrated Circuits and Signal Processing, 115</em>, 279–291. DOI:<a href="https://doi.org/10.1007/s10470-023-02160-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10470-023-02160-0</a>
  15. Guang, Y., &amp; Bin, Y. (2012). Design and Analysis of a High-Gain Rail-to-Rail Operational Amplifier. <em>Procedia Engineering, 29</em>, 3039–3043. DOI:<a href="https://doi.org/10.1016/j.proeng.2012." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.proeng.2012.</a> 01.436.
  16. Zhang, J., Zhang, C., Feng, Y., Zhang, Q., &amp; Li, T. (2024). A 65 nm CMOS Rail-to-Rail Auto-Zero Operational Amplifier Based on Charge Pump Internal Power Supply. <em>Microelectronics Journal, 145</em>, 106098. DOI:<a href="https://doi.org/10.1016/j.mejo.2024.106098" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.mejo.2024.106098</a>
  17. Menberu, T. (2023). Analysis and Comparison of Two Stage and Single Stage Operational Amplifiers Using 0.18 µm Technology. <em>American Journal of Physics and Applications, 10</em>, 72. DOI:<a href="https://doi.org/10.11648/j.ajpa.20221006.11" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.11648/j.ajpa.20221006.11</a>
  18. Agostinho, P. R., Goncalez, O. L., &amp; Wirth, G. (2016). Rail to Rail Radiation Hardened Operational Amplifier in Standard CMOS Technology with Standard Layout Techniques. <em>Microelectronics Reliability, 67,</em> 99–103. DOI:<a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> microrel.2016.11.001
  19. Kostrichkin, D., Rudenko, S., Lapkis, M, &amp; Atvars, A. (2022). Development of Electric Scheme for 4-Channel Low Noise Rail-to-Rail Operational Amplifier aRD824 Based on AD824 Prototype. <em>Engineering for Rural Development, 21</em>, 962–968. DOI:<a href="https://doi.org/10.22616/ERDev.2022.21.TF317" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.22616/ERDev.2022.21.TF317</a>
  20. Kostrichkin, D., Rudenko, S., Lapkis, M., &amp; Atvars, A. (2022). Simulation and Test Results of 4-Channel Low Noise Rail-to-Rail Operational Amplifier aRD824 Based on AD824 Prototype. <em>Engineering for Rural Development, 21,</em> 969–977. DOI:<a href="https://doi.org/10.22616/ERDev.2022.21.TF318" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.22616/ERDev.2022.21.TF318</a>
  21. Analog devices, Inc. (2011). <em>Data Sheet. AD820: Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp Data Sheet.</em> Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.analog.com/media/en/technical-documentation/data-sheets/AD820.pdf">https://www.analog.com/media/en/technical-documentation/data-sheets/AD820.pdf</ext-link>
  22. Qian, M., &amp; Wang, D. (2005). A Precision Physical Model for Three Terminal Diffused or Ion-Implanted Resistors. <em>Solid-State Electronics, 49</em>, 323–327. DOI:<a href="https://doi.org/10.1016/j." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.</a> sse.2004.11.002
DOI: https://doi.org/10.2478/lpts-2025-0020 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 31 - 46
Published on: May 27, 2025
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2025 D. Kostrichkin, S. Rudenko, M. Lapkis, A. Atvars, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.