Have a personal or library account? Click to login
Optimising Photothermal Silver Nanoparticles for Efficient Light-Activated Shape Memory Response in AgNP-Polymer Composites Cover

Optimising Photothermal Silver Nanoparticles for Efficient Light-Activated Shape Memory Response in AgNP-Polymer Composites

Open Access
|May 2025

References

  1. Delaey, J., Dubruel, P., &amp; Van Vlierberghe, S. (2020). Shape-Memory Polymers for Biomedical Applications. <em>Adv Funct Mater., 30</em>, 1909047. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/ADFM.201909047" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/ADFM.201909047</a>">https://doi.org/10.1002/ADFM.201909047</ext-link>
  2. Vidakis, N., Petousis, M., Velidakis, E., Liebscher, M., &amp; Tzounis, L. (2020). Three-Dimensional Printed Antimicrobial Objects of Polylactic Acid (PLA)-Silver Nanoparticle Nanocomposite Filaments Produced by an In-Situ Reduction Reactive Melt Mixing Process. <em>Biomimetics</em>, <em>5</em>, 42. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/BIOMIMETICS5030042" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/BIOMIMETICS5030042</a>">https://doi.org/10.3390/BIOMIMETICS5030042</ext-link>
  3. Holman, H., Kavarana, M.N., &amp; Rajab, T.K.v (2021). Smart Materials in Cardiovascular Implants: Shape Memory Alloys and Shape Memory Polymers. <em>Artif. Organs, 45,</em> 454–463. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/AOR.13851" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/AOR.13851</a>">https://doi.org/10.1111/AOR.13851</ext-link>
  4. Luo, L., Zhang, F., Wang, L., Liu, Y., &amp; Leng, J. (2024). Recent Advances in Shape Memory Polymers: Multifunctional Materials, Multiscale Structures, and Applications. <em>Adv Funct Mater., 34</em>, 2312036. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/ADFM.202312036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/ADFM.202312036</a>">https://doi.org/10.1002/ADFM.202312036</ext-link>
  5. Iorio, L., Quadrini, F., Santo, L., Circi, C., Cavallini, E., &amp; Carmine Pellegrini, R. (2024). Shape Memory Polymer Composite Hinges for Solar Sails. <em>Advances in Space Research, 74</em>, 3201–3215. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.ASR.2024.07.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.ASR.2024.07.010</a>">https://doi.org/10.1016/J.ASR.2024.07.010</ext-link>
  6. Wang, X., He, Y., Liu, Y., &amp; Leng, J. (2022). Advances in Shape Memory Polymers: Remote Actuation, Multi-Stimuli Control, 4D Printing and Prospective Applications. <em>Materials Science and Engineering: R: Reports, 151</em>, 100702. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.MSER.2022.100702" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.MSER.2022.100702</a>">https://doi.org/10.1016/J.MSER.2022.100702</ext-link>.
  7. Hassan, H., Hallez, H., Thielemans, W., &amp; Vandeginste, V. (2024). A Review of Electro-Active Shape Memory Polymer Composites: Materials Engineering Strategies for Shape Memory Enhancement. <em>Eur Polym J., 208</em>, 112861. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.EURPOLYMJ.2024.112861" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.EURPOLYMJ.2024.112861</a>">https://doi.org/10.1016/J.EURPOLYMJ.2024.112861</ext-link>
  8. Yun, G., Tang, S.Y., Sun, S., Yuan, D., Zhao, Q., Deng, L., … &amp; Li, W. (2019). Liquid Metal-Filled Magnetorheological Elastomer with Positive Piezoconductivity. <em>Nature Communications, 10</em> (1), 1–9. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41467-019-09325-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41467-019-09325-4</a>">https://doi.org/10.1038/s41467-019-09325-4</ext-link>
  9. Vitola, V., Bite, I., Apsite, I., Zolotarjovs, A., &amp; Biswas, A. (2021). CuS/polyurethane Composite Appropriate for 4D Printing. <em>Journal of Polymer Research, 28</em>, 1–6. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/S10965-020-02375-Z/TABLES/1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S10965-020-02375-Z/TABLES/1</a>">https://doi.org/10.1007/S10965-020-02375-Z/TABLES/1</ext-link>
  10. Xia, Y., He, Y., Zhang, F., Liu, Y., &amp; Leng, J. (2021). A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. <em>Advanced Materials, 33</em>, 2000713. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/ADMA.202000713" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/ADMA.202000713</a>">https://doi.org/10.1002/ADMA.202000713</ext-link>
  11. Wang, L., Zhang, F., Liu, Y., &amp; Leng, J. (2021). Shape Memory Polymer Fibers: Materials, Structures, and Applications. <em>Advanced Fiber Materials, 4</em> (1), 5–23. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/S42765-021-00073-Z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S42765-021-00073-Z</a>">https://doi.org/10.1007/S42765-021-00073-Z</ext-link>
  12. Ma, S., Jiang, Z., Wang, M., Zhang, L., Liang, Y., Zhang, Z., Ren L, &amp; Ren L. (2021). 4D printing of PLA/PCL Shape Memory Composites with Controllable Sequential Deformation. <em>Biodes Manuf., 4</em>, 867–878. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/S42242-021-00151-6/FIGURES/12" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S42242-021-00151-6/FIGURES/12</a>">https://doi.org/10.1007/S42242-021-00151-6/FIGURES/12</ext-link>
  13. Margoy, D., Gouzman, I., Grossman, E., Bolker, A., Eliaz, N., &amp; Verker, R. (2021). Epoxy-Based Shape Memory Composite for Space Applications. <em>Acta Astronaut, 178</em>, 908–919. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.ACTAASTRO.2020.08.026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.ACTAASTRO.2020.08.026</a>">https://doi.org/10.1016/J.ACTAASTRO.2020.08.026</ext-link>
  14. Kong, D., Li, J., Guo, A., &amp; Xiao, X. (2021). High Temperature Electromagnetic Shielding Shape Memory Polymer Composite. <em>Chemical Engineering Journal, 408,</em> 127365. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.CEJ.2020.127365" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.CEJ.2020.127365</a>">https://doi.org/10.1016/J.CEJ.2020.127365</ext-link>
  15. Pilate, F., Toncheva, A., Dubois, P., &amp; Raquez, J. M. (2016). Shape-Memory Polymers for Multiple Applications in the Materials World. <em>Eur Polym J., 80</em>, 268–294. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.EURPOLYMJ.2016.05.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.EURPOLYMJ.2016.05.004</a>">https://doi.org/10.1016/J.EURPOLYMJ.2016.05.004</ext-link>
  16. Rahmatabadi, D., Aberoumand, M., Soltanmohammadi, K., Soleyman, E., Ghasemi, I., Baniassadi, M., … &amp; Baghani, M. (2022). A New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structures. <em>Polymers, 14</em>, 5446. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/POLYM14245446" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/POLYM14245446</a>">https://doi.org/10.3390/POLYM14245446</ext-link>
  17. Zhao, T., Yu, R., Li, X., Cheng, B., Zhang, Y., Yang, X., … &amp; Huang, W. (2018). 4D Printing of Shape Memory Polyurethane via Stereolithography. <em>Eur Polym J., 101</em>, 120–126. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.EURPOLYMJ.2018.02.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.EURPOLYMJ.2018.02.021</a>">https://doi.org/10.1016/J.EURPOLYMJ.2018.02.021</ext-link>
  18. Ramezani, M., &amp; Monroe, M.B.B. (2022). Biostable Segmented Thermoplastic Polyurethane Shape Memory Polymers for Smart Biomedical Applications. <em>ACS Appl Polym Mater., 4</em>, 1956–1965. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/ACSAPM.1C01808/ASSET/IMAGES/LARGE/AP1C01808_0010.JPEG" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/ACSAPM.1C01808/ASSET/IMAGES/LARGE/AP1C01808_0010.JPEG</a>">https://doi.org/10.1021/ACSAPM.1C01808/ASSET/IMAGES/LARGE/AP1C01808_0010.JPEG</ext-link>
  19. Biswas, A., Apsite, I., Rosenfeldt, S., Bite, I., Vitola, V., &amp; Ionov, L. (2024). Modular Photoorigami-Based 4D Manufacturing of Vascular Junction Elements. <em>J Mater Chem. B, 12</em>, 5405–5417. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/D4TB00236A" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/D4TB00236A</a>">https://doi.org/10.1039/D4TB00236A</ext-link>
  20. Jia, H., Gu, S.Y., &amp; Chang, K. (2018). 3D Printed Self-Expandable Vascular Stents from Biodegradable Shape Memory Polymer. <em>Advances in Polymer Technology, 37,</em> 3222–3228. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/ADV.22091" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/ADV.22091</a>">https://doi.org/10.1002/ADV.22091</ext-link>
  21. Wang, L., Ma, J., Guo, T., Zhang, F., Dong, A., Zhang, S., … &amp; Leng, J. (2023). Control of Surface Wrinkles on Shape Memory PLA/PPDO Micro-nanofibers and Their Applications in Drug Release and Anti-scarring. <em>Advanced Fiber Materials, 5</em>, 632–649. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/S42765-022-00249-1/FIGURES/7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S42765-022-00249-1/FIGURES/7</a>">https://doi.org/10.1007/S42765-022-00249-1/FIGURES/7</ext-link>
  22. Molina, B.G., Ocón, G., Silva, F.M., Iribarren, J. I., Armelin, E., &amp; Alemán C. (2023). Thermally-Induced Shape Memory Behavior of Polylactic Acid/Polycaprolactone Blends. <em>Eur Polym J., 196</em>, 112230. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.EURPOLYMJ.2023.112230" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.EURPOLYMJ.2023.112230</a>">https://doi.org/10.1016/J.EURPOLYMJ.2023.112230</ext-link>
  23. Yang, C.S., Wu, H.C., Sun, J.S., Hsiao, H.M., &amp; Wang, T.W. (2013). Thermo-Induced Shape-Memory PEG-PCL Copolymer as a Dual-Drug-Eluting Biodegradable Stent. <em>ACS Appl Mater Interfaces, 5,</em> 10985–10994. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/AM4032295/SUPPL_FILE/AM4032295_SI_001.PDF" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/AM4032295/SUPPL_FILE/AM4032295_SI_001.PDF</a>">https://doi.org/10.1021/AM4032295/SUPPL_FILE/AM4032295_SI_001.PDF</ext-link>
  24. Lv, H., Tang, D., Sun, Z., Gao, J., Yang, X., Jia, S., &amp; Peng, J. (2020). Electrospun PCL-Based Polyurethane/HA Microfibers as Drug Carrier of Dexamethasone with Enhanced Biodegradability and Shape Memory Performances. <em>Colloid Polym Sci., 298</em>, 103–111. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/S00396-019-04568-5/FIGURES/11" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S00396-019-04568-5/FIGURES/11</a>">https://doi.org/10.1007/S00396-019-04568-5/FIGURES/11</ext-link>
  25. Herath, M., Epaarachchi, J., Islam, M., Fang, L., &amp; Leng, J. (2020). Light Activated Shape Memory Polymers and Composites: A Review. <em>Eur Polym J., 136,</em> 109912. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.EURPOLYMJ.2020.109912" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.EURPOLYMJ.2020.109912</a>">https://doi.org/10.1016/J.EURPOLYMJ.2020.109912</ext-link>
  26. Khurana, K., &amp; Jaggi, N. (2021). Localized Surface Plasmonic Properties of Au and Ag Nanoparticles for Sensors: A Review. <em>Plasmonics, 16</em> (4), 981–99. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/S11468-021-01381-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S11468-021-01381-1</a>">https://doi.org/10.1007/S11468-021-01381-1</ext-link>
  27. Cui, X., Ruan, Q., Zhuo, X., Xia, X., Hu, J., Fu, R., … &amp; Xu, H. (2023). Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. <em>Chem Rev., 123,</em> 6891–952. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/ACS.CHEMREV.3C00159/ASSET/IMAGES/LARGE/CR3C00159_0029.JPEG" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/ACS.CHEMREV.3C00159/ASSET/IMAGES/LARGE/CR3C00159_0029.JPEG</a>">https://doi.org/10.1021/ACS.CHEMREV.3C00159/ASSET/IMAGES/LARGE/CR3C00159_0029.JPEG</ext-link>
  28. Stoychev, G., Kirillova, A., &amp; Ionov, L. (2019). Light-Responsive Shape-Changing Polymers. <em>Adv Opt Mater., 7</em>, 1900067. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/ADOM.201900067" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/ADOM.201900067</a>">https://doi.org/10.1002/ADOM.201900067</ext-link>
DOI: https://doi.org/10.2478/lpts-2025-0017 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 3 - 13
Published on: May 27, 2025
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2025 K. Krizmane, M. Dile, E. Einbergs, V. Vitola, A. Knoks, B. Hamawandi, A. Zolotarjovs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.