Have a personal or library account? Click to login
An Efficiency Study of Foamed Polyisocyanurate (PIR) Materials as Building Insulators Cover

An Efficiency Study of Foamed Polyisocyanurate (PIR) Materials as Building Insulators

Open Access
|Mar 2025

References

  1. COM(2020) 662 final. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Renovation Wave for Europe – Greening Our Buildings, Creating Jobs, Improving Lives. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1603122220757&uri=CELEX:52020DC0662
  2. Bello, K.O., & Yan, N. (2024). Mechanical and Insulation Performance of Rigid Polyurethane Foam Reinforced with Lignin-Containing Nanocellulose Fibrils. Polymers, 16, 2119. DOI:10.3390/polym16152119
  3. Ye, Y. (2018). The Development of Polyurethane. Materials Science Materials Review. DOI:10.18063/msmr.v1i1.507
  4. Rutkowski, P., Kwiecień, K., Berezicka, A., Sułowska, J., Kwiecień, A., Śliwa-Wieczorek, K., … & Szumera, M. (2024). Thermal Stability and Heat Transfer of Polyurethanes for Joints Applications of Wooden Structures. Molecules, 29, 3337. DOI:10.3390/molecules29143337
  5. Amundarain, I., Miguel-Fernández, R., Asueta, A., García-Fernández, S., & Arnaiz, S. (2022). Synthesis of Rigid Polyurethane Foams Incorporating Polyols from Chemical Recycling of Post-Industrial Waste Polyurethane Foams. Polymers, 14, 1157. DOI:10.3390/polym14061157
  6. Borrero-López, A.M., Nicolas, V., Marie, Z., Celzard, A., & Fierro, V. A. (2022). Review of Rigid Polymeric Cellular Foams and Their Greener Tannin-Based Alternatives. Polymers, 14, 3974. DOI:10.3390/polym14193974
  7. Chaudhari, D.M., Stoliarov, S.I., Beach, M.W., & Suryadevara, K.A. (2021). Polyisocyanurate Foam Pyrolysis and Flame Spread Modeling. Appl. Sci. 11, 3463. DOI:10.3390/app11083463
  8. Mayer-Trzaskowska, P., Robakowska, M., Gierz, Ł., Pach, J., & Mazur, E. (2024). Observation of the Effect of Aging on the Structural Changes of Polyurethane/Polyurea Coatings. Polymers, 16, 23. DOI:10.3390/polym16010023
  9. Baillis, D., & Coquard, R. (2008). Radiative and conductive thermal properties of foams. In A. Öchsner, G. E. Murch, & M. J. S. De Lemos (Eds.), Cellular and Porous Materials: Thermal Properties Simulation and Prediction, 343–384. DOI:10.1002/9783527621408.ch11
  10. Biswas, K., Desjarlais, A., Smith, D., Letts, J., Yao, J., & Jiang, T. (2018). Development and Thermal Performance Verification of Composite Insulation Boards Containing Foam-Encapsulated Vacuum Insulation Panels. Appl. Energy, 228, 1159–1172. DOI:10.1016/j.apenergy.2018.06.136
  11. Federation of European Rigid Polyurethane Foam Associations. (2006). Thermal Insulation Materials Made of Rigid Polyurethane Foam (PUR/PIR), report No. 1.
  12. Makaveckas, T., Bliūdžius, R., & Burlingis, A. (2021). Determination of the Impact of Environmental Temperature on the Thermal Conductivity of Polyisocyanurate (PIR) Foam Products. Journal of Building Engineering, 41. DOI:10.1016/j. jobe.2021.102447
  13. Molleti, S., & Van Reenen, D. (2022). Effect of Temperature on Long-Term Thermal Conductivity of Closed-Cell Insulation Materials. Buildings, 12, 425. DOI:10.3390/buildings12040425
  14. Torres‐Regalado, P., Santiago-Calvo, M., Gimeno, J., & Rodríguez-Pérez, M. (2023). Thermal Conductivity Aging and Mechanical Properties of Polyisocyanurate (PIR) Foams Produced with Different Contents of HFO. Journal of Applied Polymer Science, 140 (40), 1–14. DOI: 10.1002/app.54504
  15. Berardi, U., & Naldi, M. (2017). The Impact of the Temperature Dependent Thermal Conductivity of Insulating Materials on the Effective Building Envelope Performance. Energy and Buildings, 144 (1), 262–275. DOI:0.1016/j.enbuild.2017.03.052
  16. EN13165:2012+A2:2016. Thermal Insulation Products For Buildings - Factory Made Rigid Polyurethane Foam (PU) Products – Specification. Available at: https://standards.iteh.ai/catalog/standards/cen/7820b9dccc59-44dd-96e5-3122bdf21edf/en-13165-2012a2-2016
  17. ISO 10211:2017. Thermal Bridges in Building Construction – Heat Flows and Surface Temperatures – Detailed Calculations. Available at: https://www.iso.org/standard/65710.html
  18. Finnfoam. (n.d.). Roof Insulation. Available at: https://finnfoam.net/resenija/#izoljacijakrysi-i-uteplenie
  19. Steineck, S., & Lange, J. (2024). Material Behavior of PIR Rigid Foam in Sandwich Panels: Studies beyond Construction Industry Standard. Materials, 17, 418. DOI:10.3390/ma17020418
  20. Tenaxpanel. (n.d.). PIR Sandwich Panels. Available at: https://tenaxpanel.lv/en/pirpur-sandwich-panels/
DOI: https://doi.org/10.2478/lpts-2025-0014 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 67 - 80
Published on: Mar 26, 2025
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 D. Adilova, A. Tukhtamisheva, R. Bliudzius, I. Geipele, L. Jansons, S. Lapuke, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.