Have a personal or library account? Click to login
A Comparative Study of Property Measurement for Zno-Thin Film Growth Processes Using Hydrocloric Acid (HCl) and Water (H2O) Solution-Dependent on Novel Electrostatic Spray Deposition (ESD) Cover

A Comparative Study of Property Measurement for Zno-Thin Film Growth Processes Using Hydrocloric Acid (HCl) and Water (H2O) Solution-Dependent on Novel Electrostatic Spray Deposition (ESD)

By: F. I. Abbas and  M. Sugiyama  
Open Access
|Mar 2025

References

  1. Bitenc, M., & Orel, C. (2009). Synthesis and Characterization of Crystalline Hexagonal Bipods of Zinc Oxide. Mat. Res. Bulletin, 44 (2), 381–387. DOI:10.1016/j. materresbull.2008.05.005
  2. Choi, Y., Kang, J., Hwang, D., & Park, S. (2010). Recent Advances in ZnO-Based Light-Emitting Diodes. IEEE. Trans. Elec. Devices, 57 (1), 26-41. DOI:10.1109/TED.2009.2033769
  3. Baruah, S., & Dutta, J. (2009). Hydrothermal Growth of ZnO Nanostructures. Sci. Tech. Advan. Materials, 10 (1), 013001(1–18). DOI:10.1088/1468-6996/10/1/013001
  4. Dolabella, S., Borzì, A., Dommann, A., & Neels, A. (2022). Lattice Strain and Defects Analysis in Nanostructured Semiconductor Materials and Devices by High-Resolution X-Ray Diffraction: Theoretical and Practical Aspects. Small Methods, 6 (2), 1-31. DOI:10.1002/smtd.202100932
  5. Zhu, L., & Zeng, Z. (2017). Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A Review. Sensors and Act. A: Physical, 267, 242–261. DOI:10.1016/j. sna.2017.10.021
  6. Alim, A., Fonoberov, V., & Balandin, A. (2005). Origin of the Optical Phonon Frequency Shifts in Quantum Dots. Appl. Phys. Lett., 86 (5), 053103(1–3). DOI:10.1063/1.1861509
  7. Tennyson, E. M., Doherty, T. A. S., & Stranks, S. D. (2019). Heterogeneity at Multiple Length Scales in Halide Perovskite Semiconductors. Nat. Rev. Mater., 4, 573–587.
  8. Ram, S. D. G., Kulandainathan, M. A., & Ravi, G. (2010). Aqueous Chemical Growth of Free Standing Vertical ZnO Nanoprisms, Nanorods and Nanodiskettes with Improved Texture Coefficient and Tunable Size Uniformity, Appl. Phys. A, 105, 881–890. DOI:10.1007/s00339-011-6518-6
  9. Ada, K., Goekgoez, M., Oenal, M., & Sankaya, Y. (2008). Preparation and Characterization of a ZnO Powder with the Hexagonal Plate Particles. Powder Technology, 181, 285–291. DOI:10.1016/j. powtec.2007.05.015
  10. Thomas, D. G. (1960). The Exciton Spectrum of Zinc Oxide. J. Phys. Che. Solids, 15 (1–2), 86–96. DOI:10.1016/0022-3697(60)90104-9
  11. Nakai, H., Sugiyama, M., & Chichibu, S. F. (2017). Ultraviolet Light-Absorbing and Emitting Diodes Consisting of a p-type Transparent-Semiconducting NiO Film Deposited on an n-type GaN Homoepitaxial Layer. Appl. Phys. Letter, 110 (18), 181102(1–5). DOI:10.1063/1.4982653
  12. Dutta, T., Gupta, P., Gupta, J., & Narayan, J. (2010). Effect of Li Doping in NiO Thin Films on its Transparent and Conducting Properties and its Application in Heteroepitaxial p-n Junctions. J. Appl. Phys., 108 (8), 083715 (1–7). DOI:10.1063/1.3499276
  13. Xia, X. H., Tu, J. P., Zhang, J., Wang, X. L., Zhang, W. K., & Huang, H. (2008). Morphology Effect on the Electrochromic and Electrochemical Performances of NiO Thin Films. Elec. Acta, 53 (18), 5721–5724. DOI:10.1016/j.electacta.2008.03.047
  14. Tomono, K., & Sugiyama, M. (2024). Investigating Electrical Properties and Crystal Growth in NiO Thin Films by Spray Pyrolysis and Electrostatic Spray Deposition. J. J. A. Physics, 63, 025504(1–5). DOI:10.35848/1347-4065/ad1f09
  15. Cullity, B. D. (1956). Element of X-Ray Diffraction. Upper Saddle River: Prentice Hall.
  16. Pope, C. G. (1997). X-Ray Diffraction and the Bragg Equation. J. Chem. Educ., 74 (1), 129–131. DOI:10.1021/ed074p129
  17. Pal, U., Serrano, J. G., Santiago, P., Xiong, G., Ucer, K. B., & Williams, R. T. (2006). Synthesis and Optical Properties of ZnO Nanostructures with Different Morphologies. Optical Materials, 29 (1), 65–69. DOI:10.1016/j.optmat.2006.03.015
  18. Saleem, M., Fang, L., Ruan, H. B, Wu, F., Huang, Q. L., Xu, C. L., & Kong, C. Y. (2012). Effect of Zinc Acetate Concentration on the Structural and Optical Properties of ZnO Thin Films Deposited by Sol-Gel Method. Intl. J. Phy. Sci., 7, (23), 2971–2979. DOI:10.5897/IJPS12.219
  19. Bindu, P., & Thomas, S. (2014). Estimation of Lattice Strain in ZnO Nanoparticles: X-ray Peak Profile Analysis. J. Theor. Appl Phys., 8, 123–134. DOI:10.1007/s40094-014-0141-9
  20. Kumar, V., Sharma, H., Singh, S. K., Kumar, S., & Vij, A. (2019). Enhanced Near-band Edge Emission in Pulsed Laser Deposited ZnO/c-sapphire Nanocrystalline Thin Films. App. Physics A, 125, 212 (1–7). DOI:10.1007/s00339-019-2485-0
  21. Singh, S. K., & Singhal, R. (2018). Thermal-Induced SPR Tuning of Ag-ZnO Nanocomposite Thin Film for Plasmonic Applications. Appl. Surf. Sci., 439, 919–926. DOI:10.1016/j.apsusc.2018.01.112
  22. Raoufi, D. (2013). Synthesis and Microstructural Properties of ZnO Nanoparticles Prepared by Precipitation Method. Renewable Energy, 50, 932–937. DOI:10.1016/j.renene.2012.08.076
  23. Uno, K., Yamasaki, Y., & Tanaka, I. (2017). Growth Mechanisms of Zinc Oxide and Zinc Sulfide Films by Mist Chemical Vapor Deposition. APEX 10, 015502 (1–5). DOI:10.7567/APEX.10.015502
  24. Dommann, A., & Neels., A. (2009). The Role of Strain in New Semiconductor Devices. Adv. Eng. Materials, 11 (4), 275–277. DOI:10.1002/adem.200800343
  25. Bardeen, J., & Shockley, W. (1950). Deformation Potentials and Mobilities in Non-Polar Crystals. Phys. Rev., 80 (1), 72–80.
  26. Dunne, F. P. E., Kiwanuka, A, R., & Wilkinson, A. J. (2012). Crystal Plasticity Analysis of Micro-deformation, Lattice Rotation and Geometrically Necessary Dislocation Density. Proc. R. Soc. A, 468, 2509–253. DOI:10.1098/rspa.2012.0050
DOI: https://doi.org/10.2478/lpts-2025-0011 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 30 - 41
Published on: Mar 26, 2025
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 F. I. Abbas, M. Sugiyama, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.