References
- Vares, M.-L., Ruus, A., Nutt, N., Kubjas, A., & Raamets, J. (2021). Determination of Paper Plaster Hygrothermal Performance: Influence of Different Types of Paper on Sorption and Moisture Buffering. Journal of Building Engineering, 33, 101830. https://doi.org/10.1016/j.jobe.2020.101830
- Nutt, N., Kubjas, A., Nei, L. (2020a). Adding waste paper to clay plaster to raise its ability to buffer moisture. Proceedings of the Estonian Academy of Sciences, 69 (3), 179−185. https://doi.org/10.3176/proc.2020.3.01
- Nutt, N., & Kubjas, A. (2020). Moisture Buffer Value of Composite Material Made of Clay-Sand Plaster and Wastepaper. Journal of Sustainable Architecture and Civil Engineering, 27 (2), 108−115. https://doi.org/10.5755/j01.sace.27.2.2539
- Nutt, N., Kubjas, A., Nei, L., & Ruus, A. (2020b). The Effects of Natural Paint on the Moisture Buffering Ability of Paper Plaster. Latvian Journal of Physics and Technical Sciences, 57 (5), 51–60. https://doi.org/10.2478/lpts-2020-0027
- Nutt, N., Nei, L., Muoni, H., Kubjas, A., & Raamets, J. (2023). Novel Approach to Making Environmentally Friendly Plaster − Moisture Buffer Value of Plaster Made of Wastepaper and Different Glues. Latvian Journal of Physics and Technical Sciences, 61 (6), 59−68. https://dx.doi.org/10.2478/lpts-2024-0043
- Soolepp, M., Ruus, A., Nutt, N., Raamets, J., & Kubjas, A. (2020). Hygrothermal Performance of Paper Plaster: Influence of Different Types of Paper and Production Methods on Moisture Buffering. 12th Nordic Symposium on Building Physics (NSB 2020), E3S Web of Conferences, 172, 14010. https://doi.org/10.1051/e3sconf/202017214010
- Brandstätter, F., Kalbe, K., Autengruber, M., Lukacevic, M., Kalamees, T., Ruus, A., Annuk, A., & Füssl, J. (2023). Numerical Simulation of CLT Moisture Uptake and Dry-Out Following Water Infiltration Through End-Grain Surfaces. Journal of Building Engineering, 80, 108097. https://doi.org/10.1016/j.jobe.2023.108097
- Kalbe, K., Annuk, A., Ruus, A., & Kalamees, T. (2021). Experimental Analysis of Moisture Uptake and Dry-Out in CLT End-Grain Exposed to Free Water. Journal of Physics: Conference Series, 2069, 012050. https://doi.org/10.1088/1742-6596/2069/1/012050
- Raamets, J., Ruus, A., Ivask, M., Nei, L., & Muoni, K. (2020). Indoor Air Quality in Residential Buildings with Straw- and Reed-Bale Walls. Agraarteadus: Journal of Agricultural Science, 1, XXXI, 84–95. https://dx.doi.org/10.15159/jas.20.05
- Sahlberg, B., Gunnbjörnsdottir, M., Soon, A., Jogi, R., Gislason, T., Wieslander, G., Janson, C., & Norback, D. (2013). Airborne Molds and Bacteria, Microbial Volatile Organic Compounds (MVOC), Plasticizers and Formaldehyde in Dwellings in Three North European Cities in Relation to Sick Building Syndrome (SBS). The Science of The Total Environment, 444, 433−440. https://doi.org/10.1016/j.scitotenv.2012.10.114
- Haverinen-Shaughnessy, U. (2012). Prevalence of Dampness and Mold in European Housing Stock. Journal of Exposure Science & Environmental Epidemiology, 22 (5), 461–467. https://doi.org/10.1038/jes.2012.21
- Verdier, T., Coutand, M., Bertron, A., & Roques, C. (2014). A Review of Indoor Microbial Growth Across Building Materials and Sampling and Analysis Methods. Building and Environment, 80, 136–149. https://doi.org/10.1016/j.buildenv.2014.05.030
- Torvinen, E., Meklin, T., Torkko, P., Suomalainen, S., Reiman, M., Katila, M.-L., Paulin, L., & Nevalainen, A. (2006). Mycobacteria and Fungi in Moisture-Damaged Building Materials. Applied and Environmental Microbiology, 72 (10), 6822–6824. https://doi.org/10.1128/AEM.00588-06
- Mihucz, V.G., Ruus, A., Raamets, J. Wimmerová, L. Vera,T., Bossi, R., & Huttunen, K. (2021). A Review of Microbial and Chemical Assessment of Indoor Surfaces. Applied Spectroscopy Reviews, 57 (9−10), 817−889. https://doi.org/10.1080/05704928.2021.1995870
- Du, C., Li, B., & Yu, W. (2021). Indoor Mould Exposure: Characteristics, Influences and Corresponding Associations with Built Environment − a Review. Journal of Building Engineering, 35, 101983. https://doi.org/10.1016/j.jobe.2020.101983
- Beguin, H., & Nolard, N. (1994). Mould Biodiversity in Homes I. Air and Surface Analysis of 130 Dwellings. Aerobiologia, 10 (2−3), 157−166. https://doi.org/10.1007/BF02459231
- Reboux, G., Bellanger, A.P., Roussel, S., Grenouillet, F., & Millon, L. (2010). Moisissures et habitat: risques pour la santé et espèces impliquées. Moulds in Dwellings: Health Risks and Involved Species. Revue des Maladies Respiratoires, 27 (2), 169−179. https://doi.org/10.1016/j.rmr.2009.09.003
- Curtis, L., Lieberman, A., Stark, M., Rea, W., & Vetter, M. (2004). Adverse Health Effects of Indoor Molds. Journal of Nutritional & Environmental Medicine, 14 (3), 261−274. https://doi.org/10.1080/13590840400010318
- McGinnis, M.R. (2007). Indoor Mould Development and Dispersal. Medical Mycology, 45 (1), 1–9. https://doi.org/10.1080/13693780600928495
- Vereecken, E., & Roels, S. (2012). Review of Mould Prediction Models and their Influence on Mould Risk Evaluation. Building and Environment, 51, 296–310. https://doi.org/10.1016/j.buildenv.2011.11.003
- Viitanen, H. (1994). Factors Affecting the Development of Biodeterioration in Wooden Constructions. Materials and Structures, 27, 483–493. https://doi.org/10.1007/bf02473453
- Viitanen, H, Ojanen, T, Peuhkuri, R., Vinha, J., Lähdesmäki, K., & Salminen, K. (2011). Mould Growth Modelling to Evaluate Durability of Materials. XII DBMC: International Conference on Durability of Building Materials and Components: Conference proceedings. FEUP Edições, 409−416. ISBN (Print) 9789727521326
- ASTM International. (2021). Standard Test Method for Resistance of Growth of Mold on the Surface of Interior Coatings in an Environmental Chamber. (ASTM D3273-21). ASTM International. https://standards.globalspec.com/std/14510697/astm-d3273-21
- Singh, R.P., & Desrosier, N.W. (2024). Fungi. Encyclopedia Britannica, last updated 31 Jul. 2024. (accessed 6 September 2024). https://www.britannica.com/topic/food-preservation
- Silveira, V.D.C., Pinto, M.M., & Westphal, F.S. (2019). Influence of Environmental Factors Favorable to the Development and Proliferation of Mold in Residential Buildings in Tropical Climates. Building and Environment, 166, 106421. https://doi.org/10.1016/j.buildenv.2019.106421
- Fernández-López, M.G., Batista-García, R.A., & Aréchiga-Carvajal, E.T. (2023). Alkaliphilic/Alkali-Tolerant Fungi: Molecular, Biochemical, and Biotechnological Aspects. Journal of Fungi, 9 (6), 652. https://doi.org/10.3390/jof9060652
- Shahid, M., Srivastava, M., Pandey, S., Sharma, A., & Kumar, V. (2014). Optimal Physical Parameters for Growth of Trichoderma Species at Varying pH, Temperature and Gitation. Virology & Mycology, 3 (1), 127. https://doi.org/10.4172/2161-0517.1000127
- Azadi, M., Mohsenian, S., Afsharpour, M., Mozafar, F., & Asnad, G. (2018). The Effect of Temperature, Water Activity, pH and Time on the Growth of Aspergillus Niger, Alternaria Alternate and Penicillium sp. in the Historical Papers. Ganjine-Ye Asnad, 28 (3), 166−202, https://doi.org/10.22034/ganj.2018.2302
- Tannous, J., Atoui, A., El Khoury, A., Francis, Z., Oswald, I.P., Puel, O, & Lteif, R. (2015). A Study on the Physicochemical Parameters for Penicillium Expansum Growth and Patulin Production: Effect of Temperature, pH, and Water Activity. Food Science and Nutrition, 4 (4), 611−622. https://doi.org/10.1002/fsn3.324
- Sharma, V., Sharma, A., & Seth, R. (2016). Effect of Temperature and pH Variations on Growth Pattern of Keratinophilic Fungi from Jaipur, India. Entomology and Applied Science Letters, 3 (5), 177−181. ISSN 2349-2864
- Wu, H., & Wong, J.W.C. (2022). Temperature versus Relative Humidity: which is More Important for Indoor Mold Prevention? Journal of Fungi, 8 (7), 696. https://doi.org/10.3390/jof8070696
- Johansson, P. (2008). Critical Moisture Conditions for Mould Growth on Building Materials. − Licentiate Thesis, Division of Building Physics. Byggnadsfysik LTH, Lunds Tekniska Högskola.