Have a personal or library account? Click to login
Mould Resistance of Paper Plaster Made from Cellulose-Containing Waste Cover

Mould Resistance of Paper Plaster Made from Cellulose-Containing Waste

By: J. Raamets,  N. Nutt,  R. Rudisaar,  L. Nei and  M. Olle  
Open Access
|Jan 2025

References

  1. Vares, M.-L., Ruus, A., Nutt, N., Kubjas, A., & Raamets, J. (2021). Determination of Paper Plaster Hygrothermal Performance: Influence of Different Types of Paper on Sorption and Moisture Buffering. Journal of Building Engineering, 33, 101830. https://doi.org/10.1016/j.jobe.2020.101830
  2. Nutt, N., Kubjas, A., Nei, L. (2020a). Adding waste paper to clay plaster to raise its ability to buffer moisture. Proceedings of the Estonian Academy of Sciences, 69 (3), 179−185. https://doi.org/10.3176/proc.2020.3.01
  3. Nutt, N., & Kubjas, A. (2020). Moisture Buffer Value of Composite Material Made of Clay-Sand Plaster and Wastepaper. Journal of Sustainable Architecture and Civil Engineering, 27 (2), 108−115. https://doi.org/10.5755/j01.sace.27.2.2539
  4. Nutt, N., Kubjas, A., Nei, L., & Ruus, A. (2020b). The Effects of Natural Paint on the Moisture Buffering Ability of Paper Plaster. Latvian Journal of Physics and Technical Sciences, 57 (5), 51–60. https://doi.org/10.2478/lpts-2020-0027
  5. Nutt, N., Nei, L., Muoni, H., Kubjas, A., & Raamets, J. (2023). Novel Approach to Making Environmentally Friendly Plaster − Moisture Buffer Value of Plaster Made of Wastepaper and Different Glues. Latvian Journal of Physics and Technical Sciences, 61 (6), 59−68. https://dx.doi.org/10.2478/lpts-2024-0043
  6. Soolepp, M., Ruus, A., Nutt, N., Raamets, J., & Kubjas, A. (2020). Hygrothermal Performance of Paper Plaster: Influence of Different Types of Paper and Production Methods on Moisture Buffering. 12th Nordic Symposium on Building Physics (NSB 2020), E3S Web of Conferences, 172, 14010. https://doi.org/10.1051/e3sconf/202017214010
  7. Brandstätter, F., Kalbe, K., Autengruber, M., Lukacevic, M., Kalamees, T., Ruus, A., Annuk, A., & Füssl, J. (2023). Numerical Simulation of CLT Moisture Uptake and Dry-Out Following Water Infiltration Through End-Grain Surfaces. Journal of Building Engineering, 80, 108097. https://doi.org/10.1016/j.jobe.2023.108097
  8. Kalbe, K., Annuk, A., Ruus, A., & Kalamees, T. (2021). Experimental Analysis of Moisture Uptake and Dry-Out in CLT End-Grain Exposed to Free Water. Journal of Physics: Conference Series, 2069, 012050. https://doi.org/10.1088/1742-6596/2069/1/012050
  9. Raamets, J., Ruus, A., Ivask, M., Nei, L., & Muoni, K. (2020). Indoor Air Quality in Residential Buildings with Straw- and Reed-Bale Walls. Agraarteadus: Journal of Agricultural Science, 1, XXXI, 84–95. https://dx.doi.org/10.15159/jas.20.05
  10. Sahlberg, B., Gunnbjörnsdottir, M., Soon, A., Jogi, R., Gislason, T., Wieslander, G., Janson, C., & Norback, D. (2013). Airborne Molds and Bacteria, Microbial Volatile Organic Compounds (MVOC), Plasticizers and Formaldehyde in Dwellings in Three North European Cities in Relation to Sick Building Syndrome (SBS). The Science of The Total Environment, 444, 433−440. https://doi.org/10.1016/j.scitotenv.2012.10.114
  11. Haverinen-Shaughnessy, U. (2012). Prevalence of Dampness and Mold in European Housing Stock. Journal of Exposure Science & Environmental Epidemiology, 22 (5), 461–467. https://doi.org/10.1038/jes.2012.21
  12. Verdier, T., Coutand, M., Bertron, A., & Roques, C. (2014). A Review of Indoor Microbial Growth Across Building Materials and Sampling and Analysis Methods. Building and Environment, 80, 136–149. https://doi.org/10.1016/j.buildenv.2014.05.030
  13. Torvinen, E., Meklin, T., Torkko, P., Suomalainen, S., Reiman, M., Katila, M.-L., Paulin, L., & Nevalainen, A. (2006). Mycobacteria and Fungi in Moisture-Damaged Building Materials. Applied and Environmental Microbiology, 72 (10), 6822–6824. https://doi.org/10.1128/AEM.00588-06
  14. Mihucz, V.G., Ruus, A., Raamets, J. Wimmerová, L. Vera,T., Bossi, R., & Huttunen, K. (2021). A Review of Microbial and Chemical Assessment of Indoor Surfaces. Applied Spectroscopy Reviews, 57 (9−10), 817−889. https://doi.org/10.1080/05704928.2021.1995870
  15. Du, C., Li, B., & Yu, W. (2021). Indoor Mould Exposure: Characteristics, Influences and Corresponding Associations with Built Environment − a Review. Journal of Building Engineering, 35, 101983. https://doi.org/10.1016/j.jobe.2020.101983
  16. Beguin, H., & Nolard, N. (1994). Mould Biodiversity in Homes I. Air and Surface Analysis of 130 Dwellings. Aerobiologia, 10 (2−3), 157−166. https://doi.org/10.1007/BF02459231
  17. Reboux, G., Bellanger, A.P., Roussel, S., Grenouillet, F., & Millon, L. (2010). Moisissures et habitat: risques pour la santé et espèces impliquées. Moulds in Dwellings: Health Risks and Involved Species. Revue des Maladies Respiratoires, 27 (2), 169−179. https://doi.org/10.1016/j.rmr.2009.09.003
  18. Curtis, L., Lieberman, A., Stark, M., Rea, W., & Vetter, M. (2004). Adverse Health Effects of Indoor Molds. Journal of Nutritional & Environmental Medicine, 14 (3), 261−274. https://doi.org/10.1080/13590840400010318
  19. McGinnis, M.R. (2007). Indoor Mould Development and Dispersal. Medical Mycology, 45 (1), 1–9. https://doi.org/10.1080/13693780600928495
  20. Vereecken, E., & Roels, S. (2012). Review of Mould Prediction Models and their Influence on Mould Risk Evaluation. Building and Environment, 51, 296–310. https://doi.org/10.1016/j.buildenv.2011.11.003
  21. Viitanen, H. (1994). Factors Affecting the Development of Biodeterioration in Wooden Constructions. Materials and Structures, 27, 483–493. https://doi.org/10.1007/bf02473453
  22. Viitanen, H, Ojanen, T, Peuhkuri, R., Vinha, J., Lähdesmäki, K., & Salminen, K. (2011). Mould Growth Modelling to Evaluate Durability of Materials. XII DBMC: International Conference on Durability of Building Materials and Components: Conference proceedings. FEUP Edições, 409−416. ISBN (Print) 9789727521326
  23. ASTM International. (2021). Standard Test Method for Resistance of Growth of Mold on the Surface of Interior Coatings in an Environmental Chamber. (ASTM D3273-21). ASTM International. https://standards.globalspec.com/std/14510697/astm-d3273-21
  24. Singh, R.P., & Desrosier, N.W. (2024). Fungi. Encyclopedia Britannica, last updated 31 Jul. 2024. (accessed 6 September 2024). https://www.britannica.com/topic/food-preservation
  25. Silveira, V.D.C., Pinto, M.M., & Westphal, F.S. (2019). Influence of Environmental Factors Favorable to the Development and Proliferation of Mold in Residential Buildings in Tropical Climates. Building and Environment, 166, 106421. https://doi.org/10.1016/j.buildenv.2019.106421
  26. Fernández-López, M.G., Batista-García, R.A., & Aréchiga-Carvajal, E.T. (2023). Alkaliphilic/Alkali-Tolerant Fungi: Molecular, Biochemical, and Biotechnological Aspects. Journal of Fungi, 9 (6), 652. https://doi.org/10.3390/jof9060652
  27. Shahid, M., Srivastava, M., Pandey, S., Sharma, A., & Kumar, V. (2014). Optimal Physical Parameters for Growth of Trichoderma Species at Varying pH, Temperature and Gitation. Virology & Mycology, 3 (1), 127. https://doi.org/10.4172/2161-0517.1000127
  28. Azadi, M., Mohsenian, S., Afsharpour, M., Mozafar, F., & Asnad, G. (2018). The Effect of Temperature, Water Activity, pH and Time on the Growth of Aspergillus Niger, Alternaria Alternate and Penicillium sp. in the Historical Papers. Ganjine-Ye Asnad, 28 (3), 166−202, https://doi.org/10.22034/ganj.2018.2302
  29. Tannous, J., Atoui, A., El Khoury, A., Francis, Z., Oswald, I.P., Puel, O, & Lteif, R. (2015). A Study on the Physicochemical Parameters for Penicillium Expansum Growth and Patulin Production: Effect of Temperature, pH, and Water Activity. Food Science and Nutrition, 4 (4), 611−622. https://doi.org/10.1002/fsn3.324
  30. Sharma, V., Sharma, A., & Seth, R. (2016). Effect of Temperature and pH Variations on Growth Pattern of Keratinophilic Fungi from Jaipur, India. Entomology and Applied Science Letters, 3 (5), 177−181. ISSN 2349-2864
  31. Wu, H., & Wong, J.W.C. (2022). Temperature versus Relative Humidity: which is More Important for Indoor Mold Prevention? Journal of Fungi, 8 (7), 696. https://doi.org/10.3390/jof8070696
  32. Johansson, P. (2008). Critical Moisture Conditions for Mould Growth on Building Materials. − Licentiate Thesis, Division of Building Physics. Byggnadsfysik LTH, Lunds Tekniska Högskola.
DOI: https://doi.org/10.2478/lpts-2025-0003 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 32 - 38
Published on: Jan 27, 2025
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 J. Raamets, N. Nutt, R. Rudisaar, L. Nei, M. Olle, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.