Have a personal or library account? Click to login
Optimisation and Synthesis of Single Blade Vibration Motion in Airflow Cover

Optimisation and Synthesis of Single Blade Vibration Motion in Airflow

Open Access
|Jan 2025

References

  1. Calautit, K., & Johnstone, C. (2023). State-of-the-art Review of Micro to Small-scale Wind Energy Harvesting Technologies for Building Integration. Energy Conversion and Management: X, 20 (100457), 1–29. https://doi.org/10.1016/j.ecmx.2023.100457
  2. Chawdhury, S., & Morgenthal, G. (2018). Numerical Simulations of Aeroelastic Instabilities to Optimize the Performance of Flutter-based Electromagnetic Energy Harvesters. Journal of Intelligent Material Systems and Structures, 29 (4), 479–495. https://doi.org/10.1177/1045389X17711784
  3. Aquino, A., Calautit, J., & Hughes, B. (2017). A Study on the Wind-induced Flutter Energy Harvester (WIFEH) Integration into Buildings. Energy Procedia, 142, 321–327. https://doi.org/10.1016/j.egypro.2017.12.051
  4. Aquino, A.I., Calautit, J.K., & Hughes, B.R. (2017). Evaluation of the Integration of the Wind-induced Flutter Energy Harvester (WIFEH) into the Built Environment: Experimental and Numerical Analysis. Applied Energy, 207, 61–77. https://doi.org/10.1016/j.apenergy.2017.06.041
  5. Bai, Y., & Zheng, M. (2022). Energy Harvesting Characteristics of a Flapping Wing with the Oscillating Aspirators in Uniform Flows and Shear Flows. Energy Reports, 8, 9554–9568. https://doi.org/10.1016/j.egyr.2022.07.061
  6. Zheng, M., Bai, Y., Zhao, T., & Wang, M. (2022). Energy Harvesting Properties of a Flapping Foil with Blow Aspirators: A Numerical Investigation. Energy Reports, 8, 1803–1815. https://doi.org/10.1016/j.egyr.2022.01.003
  7. Li, S., Yuan, J., & Lipson, H. (2011). Ambient Wind Energy Harvesting Using Cross-Flow Fluttering. Journal of Applied Physics, 109 (2), 026104. https://doi.org/10.1063/1.3525045
  8. Naseer, R., Dai, H.L., Abdelkefi, A., & Wang, L. (2017). Piezomagnetoelastic Energy Harvesting from Vortex-Induced Vibrations Using Monostable Characteristics. Applied Energy, 203, 142–153. https://doi.org/10.1016/j.apenergy.2017.06.018
  9. Hernandez, R., Jung, S., & Matveev, K.I. (2011). Acoustic Energy Harvesting from Vortex-Induced Tonal Sound in a Baffled Pipe. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225 (8), 1847–1850. https://doi.org/10.1177/0954406211406017
  10. Haobo, H., Di, C., Zhiyong, Z., & Wenfeng, D. (2023). Research Progress of Piezoelectric Wind Energy Harvesters Based on Vortex-Induced Vibration. Chinese Journal of Theoretical and Applied Mechanics, 55 (10), 2132–2145. https://doi.org/10.6052/0459-1879-23-364
  11. Jin, Z., Li, G., Wang, J., & Zhang, Z. (2019). Design, Modeling, and Experiments of the Vortex-Induced Vibration Piezoelectric Energy Harvester with Bionic Attachments. Complexity, ID 1670284, 1–13. https://doi.org/10.1155/2019/1670284
  12. Hu, Y., Yang, Chen, B.X., Wang, X., & Liu, J. (2018). Modeling and Experimental Study of a Piezoelectric Energy Harvester from Vortex Shedding-Induced Vibration. Energy Conversion Management, 162(1), 145–158. https://doi.org/10.1016/j.enconman.2018.02.026
  13. Wang, W., Huang, J., & Yao, Z. (2021). Cut-Corner Prism Piezoelectric Energy Harvester Based on Galloping Enhancement Mechanism. Energy Reports, 7, 6366–6374. https://doaj.org/article/87a1ad13e4ba4f419384aeb9af8e9301
  14. Barrero-Gil, A., Alonso, A.G., & Sanz-Andres, A. (2010). Energy Harvesting from Transverse Galloping. Journal of Sound and Vibration, 329 (14), 2873–2883. https://doi.org/10.1016/j.jsv.2010.01.028
  15. Abdelmoula, H., & Abdelkefi, A. (2016). The Potential of Electrical Impedance on the Performance of Galloping Systems for Energy Harvesting and Control Applications. Journal of Sound and Vibration, 370, 191–208. https://doi.org/10.1016/j.jsv.2016.01.037
  16. Abdelkefi, A., Hajj, M.R., & Nayfeh, A.H. (2012). Power Harvesting from Transverse Galloping of Square Cylinder. Nonlinear Dynamics, 70, 1355–1363. https://doi.org/10.1007/s11071-012-0538-4
  17. Le, H.D., & Kwon, S.-D. (2021). Design and Experiments of a Galloping-Based Wind Energy Harvester Using Quadruple Halbach Arrays. Energies, 14 (19), 1–14. https://doi.org/10.3390/en14196094
  18. Musial, W., & Ram, B. (2010). Large-Scale Offshore Wind Power in the United States. Assessment of Opportunities and Barriers. Report NREL/TP-500-40745. Golden, Colorado 80401, USA: National Renewable Energy Laboratory, 240 p. Available at https://www.nrel.gov/docs/fy10osti/40745.pdf
  19. Li, Z., Zhou, S. & Yang, Z. (2022). Recent Progress on Flutter‐Based Wind Energy Harvesting. International Journal of Mechanical System Dynamics, 2 (1), 82–98. https://doi.org/10.1002/msd2.12035
  20. Lavendelis, E., & Viba, J. (2009). Optimal Synthesis Method for Invention of New Mechatronic Systems in Vibrotechnics. Solid State Phenomena, 147149, 432–437. https://doi.org/10.4028/www.scientific.net/SSP.147-149.432
  21. Viba, J. (1988). Optimization and Syntheses of Vibration Shock Machines, (in Russian). Latvia, Riga: Zinatne.
  22. Boltyanski, V.G., Gamkrelidze, R.V., Mishchenko, E.F., & Pontryagin, L.S. (1960). The maximum principle in the theory of optimal processes of control. IFAC Proceedings, 1 (1), 464–469.
  23. Park, J.H., Lee, T.H., Liu, Y., & Chen, J. (2019). Dynamic Systems with Time Delays: Stability and Control. Berlin: Springer.
  24. Viba, J., Beresnevich, V., & Irbe, M. (2020). Synthesis and optimization of wind energy conversion devices. In Maalawi, K.Y. (ed.), Design Optimization of Wind Energy Conversion Systems with Applications. London, UK: IntechOpen, 125–141. http://dx.doi.org/10.5772/intechopen.90819
  25. Beresnevich, V., Cerpinska, M., Viba, J., & Irbe M. (2022). Dynamics Analysis and Structural Synthesis of Wind Energy Production Device with Closed Loop Conveyor. Vibroengineering Procedia, 44, 156–162. https://www.extrica.com/article/22867
  26. Viba, J., Beresnevich, V., Noskovs, S., & Irbe, M. (2016). Investigations of Rotating Blade for Energy Extraction from Fluid Flow. Vibroengineering Procedia, 8, 312–315. https://www.extrica.com/article/17676
  27. Viba, J., Beresnevich, V., Irbe, M., & Dobelis, J. (2017). The Control of Blades Orientation to Air Flow in Wind Energetic Device. Energy Procedia, 128, 302–308. https://doi.org/10.1016/j.egypro.2017.08.317
  28. Ratmarao, N., & Reitan, D. (1970). Improvement of Power System Transient Stability Using Optimal Control: Bang-Bang Control of Reactance. IEEE Transactions on Power Apparatus and Systems, PAS-89 (5), 975–948.
DOI: https://doi.org/10.2478/lpts-2025-0001 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 3 - 12
Published on: Jan 27, 2025
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 V. Beresnevics, J. Viba, M. Irbe, M. Cerpinska, S.K. Vutukuru, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.