Have a personal or library account? Click to login
Mechanical and Thermal Properties of Nanocomposites Reinforced with Pan Nanofibre Mats Cover

Mechanical and Thermal Properties of Nanocomposites Reinforced with Pan Nanofibre Mats

Open Access
|Nov 2024

References

  1. Bahrami, A. Cordenier, F., Van Velthem, P., Ballout, W., Pardoen, T., Nysten, B., & Bailly, C. (2016). Synergistic Local Toughening of High Performance Epoxy-Matrix Composites Using Blended Block Copolymer-Thermoplastic Thin Films. Compos. Part A Appl. Sci. Manuf., 91, 398–405. DOI: 10.1016/J.COMPOSITESA.2016.08.038
  2. Brugo, T., Minak. G., Zucchelli, A., Yan, X. T., Belcari, J., Saghafi, H., & Palazzetti, R. (2017). Study on Mode I Fatigue Behaviour of Nylon 6,6 Nanoreinforced CFRP Laminates. Compos. Struct., 164, 51–57. DOI: 10.1016/j.compstruct.2016.12.070
  3. Daelemans, L., van der Heijden, S., De Baere, I., Rahier, H., Van Paepegem, W., & De Clerck, K. (2015). Nanofibre Bridging as a Toughening Mechanism in Carbon/Epoxy Composite Laminates Interleaved with Electrospun Polyamide Nanofibrous Veils. Compos. Sci. Technol., 117, 244–256. DOI: 10.1016/j.compscitech.2015.06.021.
  4. Sanchaniya, J.-V., Kanukuntla, S.-P., Modappathi, P., & Macanovskis, A. (2022). Mechanical Behaviour Numerical Investigation of Composite Structure, Consisting of Polymeric Nanocomposite Mat and Textile. 21st Int. Sci. Conf. Eng. Rural Dev. Proc., 21, 720–726. DOI: 10.22616/erdev.2022.21.tf225
  5. Grauda, D., Butkauskas, D., Vyšniauskienė, R., Rančelienė, V., Krasņevska, N., Miķelsone, A., … & Ļašenko, I. (2023). Establishment of Biotesting System to Study Features of Innovative Multifunctional Biotextile. Proc. Latv. Acad. Sci. Sect. B Nat. Exact, Appl. Sci., 77, 3–4, 186–192. DOI: 10.2478/prolas-2023-0026
  6. Asfand, N., & Daukantiene, V. (2023). Study of the Tensile and Bending Stiffness Behavior of Antistatic and Antibacterial Knitted Fabrics. Fibres Text. East. Eur., 31 (3), 1–9. DOI: 10.2478/ftee-2023-0026
  7. Ravindran, A. R., Ladani, R. B., Kinloch, A. J., Wang, C. H., & Mouritz, A. P. (2021). Improving the Delamination Resistance and Impact Damage Tolerance of Carbon Fibre-Epoxy Composites Using Multi-Scale Fibre Toughening. Compos. Part A Appl. Sci. Manuf., 150, 106624. DOI: 10.1016/j. compositesa.2021.106624
  8. Mohammadi, R., Akrami, R., Assaad, M., Nasor, M., Imran, A., & Fotouhi, M. (2023). Polysulfone Nanofibre-Modified Composite Laminates: Investigation of Mode-I Fatigue Behavior and Damage Mechanisms. Theor. Appl. Fract. Mech., 127, 104078. DOI: 10.1016/j.tafmec.2023.104078
  9. Daelemans, L., Kizildag, N., Van Paepegem, W., D’hooge, D. R., & De Clerck, K. (2019). Interdiffusing Core-Shell Nanofibre Interleaved Composites for Excellent Mode I and Mode II Delamination Resistance. Compos. Sci. Technol., 175, 143–150, 2019. DOI: 10.1016/j.compscitech.2019.03.019
  10. MacCaferri, E., Mazzocchetti, L., Benelli, T., Brugo, T. M., Zucchelli, A., & Giorgini, L. (2022). Self-Assembled NBR/Nomex Nanofibres as Lightweight Rubbery Nonwovens for Hindering Delamination in Epoxy CFRPs. ACS Appl. Mater. Interfaces, 14 (1), 1885–1899. DOI: 10.1021/acsami.1c17643.
  11. Ortolani, J., Maccaferri, E., Mazzocchetti, L., Benelli, T., Brugo, T. M., Zucchelli, A., Giorgini, L. (2022). Polyamide Nanofibres Impregnated with Nitrile Rubber for Enhancing CFRP Delamination Resistance. Macromol. Symp., 405 (1), 1–3. DOI: 10.1002/masy.202100232
  12. Ladani, R. B., Wu, S., Kinloch, A. J., Ghorbani, K., Zhang, J., Mouritz, A. P., & Wang, C. H. (2016). Multifunctional Properties of Epoxy Nanocomposites Reinforced by Aligned Nanoscale Carbon. Mater. Des., 94, 554–564. DOI: 10.1016/j. matdes.2016.01.052
  13. Ladani, R. B., Wu, S., Kinloch, A. J., Ghorbani, K., Mouritz, A. P., & Wang, C. H. (2017). Enhancing Fatigue Resistance and Damage Characterisation in Adhesively-Bonded Composite Joints by Carbon Nanofibres. Compos. Sci. Technol., 149, 116–126. DOI: 10.1016/j.compscitech.2017.06.018
  14. Daelemans, L., Cohades, A., Meireman, T., Beckx, J., Spronk, S., Kersemans, M., … & De Clerck, K. (2018). Electrospun Nanofibrous Interleaves for Improved Low Velocity Impact Resistance of Glass Fibre Reinforced Composite Laminates. Mater. Des., 141, 170–184. DOI: 10.1016/j. matdes.2017.12.045
  15. Garcia, C., Trendafilova, I., & Zucchelli, A. (2018). The Effect of Polycaprolactone Nanofibres on the Dynamic and Impact Behavior of Glass Fibre Reinforced Polymer Composites. J. Compos. Sci., 2 (3), 1–12. DOI: 10.3390/jcs2030043
  16. Ladani, R. B., Bhasin, M., Wu, S., Ravindran, A. R., Ghorbani, K., Zhang, J., … & Wang, C. H. (2018). Fracture and Fatigue Behaviour of epoxy Nanocomposites Containing 1-D and 2-D Nanoscale Carbon Fillers. Eng. Fract. Mech., 203, 102–114. DOI: 10.1016/j.engfracmech.2018.04.033
  17. Ladani, R. B., Wu, S., Zhang, J., Ghorbani, K., Kinloch, A. J., Mouritz, A. P., & Wang, C. H. (2017). Using Carbon Nanofibre Sensors for In-situ Detection and Monitoring of Disbonds in Bonded Composite Joints. Procedia Eng., 188, 362–368. DOI: 10.1016/j.proeng.2017.04.496
  18. Nimbagal, V., Banapurmath, N. R., Umarfarooq, M. A., Revankar, S., Sajjan, A. M., Soudagar, M. E. M., … & Elfasakhany, A. (2023). Mechanical and fracture properties of carbon nano fibers/Short Carbon Fiber Epoxy Composites. Polym. Compos., 44 (7), 3977–3989. DOI: 10.1002/pc.27371
  19. Maccaferri, E., Mazzocchetti, L., Benelli, T., Brugo, T. M., Zucchelli, A., & Giorgini, L. (2020). Rubbery Nanofibrous Interleaves Enhance Fracture Toughness and Damping of CFRP Laminates. Mater. Des., 195, 109049. DOI: 10.1016/j. matdes.2020.109049
  20. Maccaferri, E., Mazzocchetti, L., Benelli, T., Brugo, T. M., Zucchelli, A., & Giorgini, L. (2021). Rubbery-Modified CFRPS with Improved Mode I Fracture Toughness: Effect of Nanofibrous Mat Grammage and Positioning on Tanδ Behaviour. Polymers (Basel)., 13 (12). DOI: 10.3390/polym13121918
  21. Gavande, V., Nagappan, S., Seo, B., Cho, Y. S., & Lee, W. K. (2023). Transparent Nylon 6 Nanofibres-Reinforced Epoxy Matrix Composites with Superior Mechanical and Thermal Properties. Polym. Test., 122, 108002. DOI: 10.1016/j. polymertesting.2023.108002
  22. Le, B., Fu, G., Khaliq, J., Huo, D., & Shyha, I. (2023). Experimental Investigation on Thermomechanical Properties and Micro-Machinability of Carbon Nanofibre Reinforced Epoxy Nanocomposites. J. Manuf. Process., 99, 781–793, 2023. DOI: 10.1016/j.jmapro.2023.05.080
  23. Liu, J., Lu, S., Liu, X., Wang, B., Yu, Z., & Che, C. (2023). Effect of Natural Indocalamus Leaf Addition on the Mechanical Properties of Epoxy and Epoxy-Carbon Fiber Composites. E-Polymers, 23 (1). DOI: 10.1515/epoly-2023-0039
  24. Guadagno, L., Naddeo, C., & Raimondo, M. (2023). Thermal, Mechanical and Electrical Performance of Structural Epoxy Resins Filled with Carbon Nanofibres. J. Therm. Anal. Calorim., 148 (23), 13095–13106. DOI: 10.1007/s10973-023-12521-6
  25. Lasenko, I., Sanchaniya, J. V., Kanukuntla, S. P., Ladani, Y., Viluma-Gudmona, A., Kononova, O., … & Selga, T. (2023). The Mechanical Properties of Nanocomposites Reinforced with PA6 Electrospun Nanofibres. Polymers (Basel)., 15 (3). DOI: 10.3390/polym15030673
  26. Erdal, M. O., Yazman, Ş., Gemi, L., & Yapici, A. (2018). The Effect of Nonwoven Electrospun PAN Nanofibre Mat on Mechanical and Thermal Properties of Epoxy Composites. Süleyman Demirel Üniversitesi Fen Bilim. Enstitüsü Derg., 22 (2), p. 528. DOI: 10.19113/sdufbed.81545
  27. Wable, V., Biswas, P. K., Moheimani, R., Aliahmand, N., Omole, P., Siegel, A. P., … & Dalir, H. (2021). Engineering the Electrospinning of MWCNTs/Epoxy Nanofibre Scaffolds to Enhance Physical and Mechanical Properties of CFRPs. Compos. Sci. Technol., 213, 108941. DOI: 10.1016/j.compscitech.2021.108941
  28. Simunin, M. M., Voronin, A. S., Fadeev, Yu. V., Dobrosmyslov, S. S., Kuular, A. A., … & Khartov, S. V. (2023). Influence of the Addition of Alumina Nanofibres on the Strength of Epoxy Resins. Materials (Basel)., 16 (4), 1–10. DOI: 10.3390/ma16041343
  29. Wang, Y., Sun, Z., Yin, P., Qu, R., Zhang, Y., & Sun, C. (2023). Preparation and Mechanical Properties of UV-Curable Epoxy Acrylate/Modified Aramid Nanofibre Nanocomposite Films. Nanomaterials, 13 (22), 2960. DOI: 10.3390/nano13222960
  30. Maccaferri, E., Mazzocchetti, L., Benelli, T., Ortolani, J., Brugo, T. M., Zucchelli, A., & Giorgini, L. (2022). Is Graphene Always Effective in Reinforcing Composites? The Case of Highly Graphene-Modified Thermoplastic Nanofibres and Their Unfortunate Application in CFRP Laminates. Polymers (Basel)., 14 (24), 5565. DOI: 10.3390/polym14245565
  31. Santos, P., Silva, A. P., & Reis, P. N. B. (2023). Effect of Carbon Nanofibres on the Viscoelastic Response of Epoxy Resins. Polymers (Basel)., 15 (4). DOI: 10.3390/polym15040821
  32. Wu, S., Ladani, R. B., Ravindran, A. R., Zhang, J., Mouritz, A. P., Kinloch, A. J., & Wang, C. H. (2017). Aligning Carbon Nanofibres in Glass-Fibre/Epoxy Composites to Improve Interlaminar Toughness and Crack-Detection Capability. Compos. Sci. Technol., 152, 46–56. DOI: 10.1016/j.compscitech.2017.09.007
  33. Ravindran, A. R., Ladani, R. B., Wu, S., Kinloch, A. J., Wang, C. H., & Mouritz, A. P. (2018). Multi-Scale Toughening of Epoxy Composites via Electric Field Alignment of Carbon Nanofibres and Short Carbon Fibres. Compos. Sci. Technol., 167, 115–125. DOI: 10.1016/j.compscitech.2018.07.034
  34. Daelemans, L., Verschatse, O., Heirman, L., Van Paepegem, W., & De Clerck, K. (2021). Toughening Mechanisms Responsible for Excellent Crack Resistance in Thermoplastic Nanofibre Reinforced Epoxies through In-situ optical and Scanning Electron Microscopy. Compos. Sci. Technol., 201, 108504. doi: 10.1016/j. compscitech.2020.108504
  35. Minosi, S., Cocchi, D., Maccaferri, E., Pirondi, A., Zucchelli, A., Mazzocchetti, L., … & Campanini, F. (2021). Exploitation of Rubbery Electrospun Nanofibrous Mat for Fracture Toughness Improvement of Structural Epoxy Adhesive Bonded Joints. J. Adv. Join. Process., 3, 100050. DOI: 10.1016/j.jajp.2021.100050
  36. Saghafi, H., Palazzetti, R., Heidary, H., Brugo, T. M., Zucchelli, A., & Minak, G. (2020). Toughening Behavior of Carbon/Epoxy Laminates Interleaved by PSF/PVDF Composite Nanofibres. Appl. Sci., 10 (16), 1–12. DOI: 10.3390/app10165618
  37. Saghafi, H., Nikbakht, A., Mohammadi, R., & Zarouchas, D. (2021). The Thickness Effect of PSF Nanofibrous Mat on Fracture Toughness of Carbon/Epoxy Laminates. Materials (Basel)., 14 (13). DOI: 10.3390/ma14133469
  38. Santos, P., Silva, A. P., & Reis, P. N. B. (2023). Effect of Carbon Nanofibres on the Strain Rate and Interlaminar Shear Strength of Carbon/Epoxy Composites. Materials (Basel), 16 (12). DOI: 10.3390/ma16124332
  39. Maccaferri, E., Donne, M. D., Mazzocchetti, L., Benelli, T., Brugo, T. M., Zucchelli, A., & Giorgini, L. (2022). Rubber-Enhanced Polyamide Nanofibres for a Significant Improvement of CFRP Interlaminar Fracture Toughness. Sci. Rep., 12 (1), 1–16. DOI: 10.1038/s41598-022-25287-y
  40. Torre-Muruzabal, A., Daelemans, L., Van Assche, G., De Clerck, K., & Rahier, H. (2016). Creation of a Nanovascular Network by Electrospun Sacrificial Nanofibres for Self-Healing Applications and its Effect on the Flexural Properties of the Bulk Material. Polym. Test., 54, 78–83. DOI: 10.1016/j. polymertesting.2016.06.026
  41. Brugo, T. M., Maccaferri, E., Cocchi, D., Mazzocchetti, L., Giorgini, L., Fabiani, D., & Zucchelli, A. (2021). Self-Sensing Hybrid Composite Laminate by Piezoelectric Nanofibres Interleaving. Compos. Part B Eng., 212, 108673. DOI: 10.1016/j.compositesb.2021.108673
  42. Sanchaniya, J. V., Lasenko, I., Kanukuntala, S. P., Smogor, H., Viluma-Gudmona, A., Krasnikovs, A., … & Gobins, V. (2023). Mechanical and Thermal Characteristics of Annealed-Oriented PAN Nanofibres. Polymers (Basel), 15 (15), 3287. DOI: doi. org/10.3390/polym15153287
  43. Sanchaniya, J. V., Lasenko, I., Kanukuntla, S. P., Mannodi, A., Viluma-Gudmona, A., & Gobins, V. (2023). Preparation and Characterization of Non-Crimping Laminated Textile Composites Reinforced with Electrospun Nanofibres. Nanomaterials, 13 (13), 1949. DOI: 10.3390/nano13131949
  44. Sanchaniya, J. V., Lasenko, I., Gobins, V., & Kobeissi, A. (2024). A Finite Element Method for Determining the Mechanical Properties of Electrospun Nanofibrous Mats. Polym., 16 (6), 852. DOI: 10.3390/polym16060852
  45. Sanchaniya, J. V., Lasenko, I., Vijayan, V., Smogor, H., Gobins, V., Kebeissi, A., … & Goljandin, D. (2024). A Novel Method to Enhance the Mechanical Properties of Polyacrylonitrile Nanofibre Mats: An Experimental and Numerical Investigation. Polymers (Basel), 16 (7), 992. DOI: 10.3390/polym16070992
DOI: https://doi.org/10.2478/lpts-2024-0046 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 92 - 106
Published on: Nov 30, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2024 J. V. Sanchaniya, S. P. Dobariya, I. Lasenko, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.