References
- Bahrami, A. Cordenier, F., Van Velthem, P., Ballout, W., Pardoen, T., Nysten, B., & Bailly, C. (2016). Synergistic Local Toughening of High Performance Epoxy-Matrix Composites Using Blended Block Copolymer-Thermoplastic Thin Films. Compos. Part A Appl. Sci. Manuf., 91, 398–405. DOI: 10.1016/J.COMPOSITESA.2016.08.038
- Brugo, T., Minak. G., Zucchelli, A., Yan, X. T., Belcari, J., Saghafi, H., & Palazzetti, R. (2017). Study on Mode I Fatigue Behaviour of Nylon 6,6 Nanoreinforced CFRP Laminates. Compos. Struct., 164, 51–57. DOI: 10.1016/j.compstruct.2016.12.070
- Daelemans, L., van der Heijden, S., De Baere, I., Rahier, H., Van Paepegem, W., & De Clerck, K. (2015). Nanofibre Bridging as a Toughening Mechanism in Carbon/Epoxy Composite Laminates Interleaved with Electrospun Polyamide Nanofibrous Veils. Compos. Sci. Technol., 117, 244–256. DOI: 10.1016/j.compscitech.2015.06.021.
- Sanchaniya, J.-V., Kanukuntla, S.-P., Modappathi, P., & Macanovskis, A. (2022). Mechanical Behaviour Numerical Investigation of Composite Structure, Consisting of Polymeric Nanocomposite Mat and Textile. 21st Int. Sci. Conf. Eng. Rural Dev. Proc., 21, 720–726. DOI: 10.22616/erdev.2022.21.tf225
- Grauda, D., Butkauskas, D., Vyšniauskienė, R., Rančelienė, V., Krasņevska, N., Miķelsone, A., … & Ļašenko, I. (2023). Establishment of Biotesting System to Study Features of Innovative Multifunctional Biotextile. Proc. Latv. Acad. Sci. Sect. B Nat. Exact, Appl. Sci., 77, 3–4, 186–192. DOI: 10.2478/prolas-2023-0026
- Asfand, N., & Daukantiene, V. (2023). Study of the Tensile and Bending Stiffness Behavior of Antistatic and Antibacterial Knitted Fabrics. Fibres Text. East. Eur., 31 (3), 1–9. DOI: 10.2478/ftee-2023-0026
- Ravindran, A. R., Ladani, R. B., Kinloch, A. J., Wang, C. H., & Mouritz, A. P. (2021). Improving the Delamination Resistance and Impact Damage Tolerance of Carbon Fibre-Epoxy Composites Using Multi-Scale Fibre Toughening. Compos. Part A Appl. Sci. Manuf., 150, 106624. DOI: 10.1016/j. compositesa.2021.106624
- Mohammadi, R., Akrami, R., Assaad, M., Nasor, M., Imran, A., & Fotouhi, M. (2023). Polysulfone Nanofibre-Modified Composite Laminates: Investigation of Mode-I Fatigue Behavior and Damage Mechanisms. Theor. Appl. Fract. Mech., 127, 104078. DOI: 10.1016/j.tafmec.2023.104078
- Daelemans, L., Kizildag, N., Van Paepegem, W., D’hooge, D. R., & De Clerck, K. (2019). Interdiffusing Core-Shell Nanofibre Interleaved Composites for Excellent Mode I and Mode II Delamination Resistance. Compos. Sci. Technol., 175, 143–150, 2019. DOI: 10.1016/j.compscitech.2019.03.019
- MacCaferri, E., Mazzocchetti, L., Benelli, T., Brugo, T. M., Zucchelli, A., & Giorgini, L. (2022). Self-Assembled NBR/Nomex Nanofibres as Lightweight Rubbery Nonwovens for Hindering Delamination in Epoxy CFRPs. ACS Appl. Mater. Interfaces, 14 (1), 1885–1899. DOI: 10.1021/acsami.1c17643.
- Ortolani, J., Maccaferri, E., Mazzocchetti, L., Benelli, T., Brugo, T. M., Zucchelli, A., Giorgini, L. (2022). Polyamide Nanofibres Impregnated with Nitrile Rubber for Enhancing CFRP Delamination Resistance. Macromol. Symp., 405 (1), 1–3. DOI: 10.1002/masy.202100232
- Ladani, R. B., Wu, S., Kinloch, A. J., Ghorbani, K., Zhang, J., Mouritz, A. P., & Wang, C. H. (2016). Multifunctional Properties of Epoxy Nanocomposites Reinforced by Aligned Nanoscale Carbon. Mater. Des., 94, 554–564. DOI: 10.1016/j. matdes.2016.01.052
- Ladani, R. B., Wu, S., Kinloch, A. J., Ghorbani, K., Mouritz, A. P., & Wang, C. H. (2017). Enhancing Fatigue Resistance and Damage Characterisation in Adhesively-Bonded Composite Joints by Carbon Nanofibres. Compos. Sci. Technol., 149, 116–126. DOI: 10.1016/j.compscitech.2017.06.018
- Daelemans, L., Cohades, A., Meireman, T., Beckx, J., Spronk, S., Kersemans, M., … & De Clerck, K. (2018). Electrospun Nanofibrous Interleaves for Improved Low Velocity Impact Resistance of Glass Fibre Reinforced Composite Laminates. Mater. Des., 141, 170–184. DOI: 10.1016/j. matdes.2017.12.045
- Garcia, C., Trendafilova, I., & Zucchelli, A. (2018). The Effect of Polycaprolactone Nanofibres on the Dynamic and Impact Behavior of Glass Fibre Reinforced Polymer Composites. J. Compos. Sci., 2 (3), 1–12. DOI: 10.3390/jcs2030043
- Ladani, R. B., Bhasin, M., Wu, S., Ravindran, A. R., Ghorbani, K., Zhang, J., … & Wang, C. H. (2018). Fracture and Fatigue Behaviour of epoxy Nanocomposites Containing 1-D and 2-D Nanoscale Carbon Fillers. Eng. Fract. Mech., 203, 102–114. DOI: 10.1016/j.engfracmech.2018.04.033
- Ladani, R. B., Wu, S., Zhang, J., Ghorbani, K., Kinloch, A. J., Mouritz, A. P., & Wang, C. H. (2017). Using Carbon Nanofibre Sensors for In-situ Detection and Monitoring of Disbonds in Bonded Composite Joints. Procedia Eng., 188, 362–368. DOI: 10.1016/j.proeng.2017.04.496
- Nimbagal, V., Banapurmath, N. R., Umarfarooq, M. A., Revankar, S., Sajjan, A. M., Soudagar, M. E. M., … & Elfasakhany, A. (2023). Mechanical and fracture properties of carbon nano fibers/Short Carbon Fiber Epoxy Composites. Polym. Compos., 44 (7), 3977–3989. DOI: 10.1002/pc.27371
- Maccaferri, E., Mazzocchetti, L., Benelli, T., Brugo, T. M., Zucchelli, A., & Giorgini, L. (2020). Rubbery Nanofibrous Interleaves Enhance Fracture Toughness and Damping of CFRP Laminates. Mater. Des., 195, 109049. DOI: 10.1016/j. matdes.2020.109049
- Maccaferri, E., Mazzocchetti, L., Benelli, T., Brugo, T. M., Zucchelli, A., & Giorgini, L. (2021). Rubbery-Modified CFRPS with Improved Mode I Fracture Toughness: Effect of Nanofibrous Mat Grammage and Positioning on Tanδ Behaviour. Polymers (Basel)., 13 (12). DOI: 10.3390/polym13121918
- Gavande, V., Nagappan, S., Seo, B., Cho, Y. S., & Lee, W. K. (2023). Transparent Nylon 6 Nanofibres-Reinforced Epoxy Matrix Composites with Superior Mechanical and Thermal Properties. Polym. Test., 122, 108002. DOI: 10.1016/j. polymertesting.2023.108002
- Le, B., Fu, G., Khaliq, J., Huo, D., & Shyha, I. (2023). Experimental Investigation on Thermomechanical Properties and Micro-Machinability of Carbon Nanofibre Reinforced Epoxy Nanocomposites. J. Manuf. Process., 99, 781–793, 2023. DOI: 10.1016/j.jmapro.2023.05.080
- Liu, J., Lu, S., Liu, X., Wang, B., Yu, Z., & Che, C. (2023). Effect of Natural Indocalamus Leaf Addition on the Mechanical Properties of Epoxy and Epoxy-Carbon Fiber Composites. E-Polymers, 23 (1). DOI: 10.1515/epoly-2023-0039
- Guadagno, L., Naddeo, C., & Raimondo, M. (2023). Thermal, Mechanical and Electrical Performance of Structural Epoxy Resins Filled with Carbon Nanofibres. J. Therm. Anal. Calorim., 148 (23), 13095–13106. DOI: 10.1007/s10973-023-12521-6
- Lasenko, I., Sanchaniya, J. V., Kanukuntla, S. P., Ladani, Y., Viluma-Gudmona, A., Kononova, O., … & Selga, T. (2023). The Mechanical Properties of Nanocomposites Reinforced with PA6 Electrospun Nanofibres. Polymers (Basel)., 15 (3). DOI: 10.3390/polym15030673
- Erdal, M. O., Yazman, Ş., Gemi, L., & Yapici, A. (2018). The Effect of Nonwoven Electrospun PAN Nanofibre Mat on Mechanical and Thermal Properties of Epoxy Composites. Süleyman Demirel Üniversitesi Fen Bilim. Enstitüsü Derg., 22 (2), p. 528. DOI: 10.19113/sdufbed.81545
- Wable, V., Biswas, P. K., Moheimani, R., Aliahmand, N., Omole, P., Siegel, A. P., … & Dalir, H. (2021). Engineering the Electrospinning of MWCNTs/Epoxy Nanofibre Scaffolds to Enhance Physical and Mechanical Properties of CFRPs. Compos. Sci. Technol., 213, 108941. DOI: 10.1016/j.compscitech.2021.108941
- Simunin, M. M., Voronin, A. S., Fadeev, Yu. V., Dobrosmyslov, S. S., Kuular, A. A., … & Khartov, S. V. (2023). Influence of the Addition of Alumina Nanofibres on the Strength of Epoxy Resins. Materials (Basel)., 16 (4), 1–10. DOI: 10.3390/ma16041343
- Wang, Y., Sun, Z., Yin, P., Qu, R., Zhang, Y., & Sun, C. (2023). Preparation and Mechanical Properties of UV-Curable Epoxy Acrylate/Modified Aramid Nanofibre Nanocomposite Films. Nanomaterials, 13 (22), 2960. DOI: 10.3390/nano13222960
- Maccaferri, E., Mazzocchetti, L., Benelli, T., Ortolani, J., Brugo, T. M., Zucchelli, A., & Giorgini, L. (2022). Is Graphene Always Effective in Reinforcing Composites? The Case of Highly Graphene-Modified Thermoplastic Nanofibres and Their Unfortunate Application in CFRP Laminates. Polymers (Basel)., 14 (24), 5565. DOI: 10.3390/polym14245565
- Santos, P., Silva, A. P., & Reis, P. N. B. (2023). Effect of Carbon Nanofibres on the Viscoelastic Response of Epoxy Resins. Polymers (Basel)., 15 (4). DOI: 10.3390/polym15040821
- Wu, S., Ladani, R. B., Ravindran, A. R., Zhang, J., Mouritz, A. P., Kinloch, A. J., & Wang, C. H. (2017). Aligning Carbon Nanofibres in Glass-Fibre/Epoxy Composites to Improve Interlaminar Toughness and Crack-Detection Capability. Compos. Sci. Technol., 152, 46–56. DOI: 10.1016/j.compscitech.2017.09.007
- Ravindran, A. R., Ladani, R. B., Wu, S., Kinloch, A. J., Wang, C. H., & Mouritz, A. P. (2018). Multi-Scale Toughening of Epoxy Composites via Electric Field Alignment of Carbon Nanofibres and Short Carbon Fibres. Compos. Sci. Technol., 167, 115–125. DOI: 10.1016/j.compscitech.2018.07.034
- Daelemans, L., Verschatse, O., Heirman, L., Van Paepegem, W., & De Clerck, K. (2021). Toughening Mechanisms Responsible for Excellent Crack Resistance in Thermoplastic Nanofibre Reinforced Epoxies through In-situ optical and Scanning Electron Microscopy. Compos. Sci. Technol., 201, 108504. doi: 10.1016/j. compscitech.2020.108504
- Minosi, S., Cocchi, D., Maccaferri, E., Pirondi, A., Zucchelli, A., Mazzocchetti, L., … & Campanini, F. (2021). Exploitation of Rubbery Electrospun Nanofibrous Mat for Fracture Toughness Improvement of Structural Epoxy Adhesive Bonded Joints. J. Adv. Join. Process., 3, 100050. DOI: 10.1016/j.jajp.2021.100050
- Saghafi, H., Palazzetti, R., Heidary, H., Brugo, T. M., Zucchelli, A., & Minak, G. (2020). Toughening Behavior of Carbon/Epoxy Laminates Interleaved by PSF/PVDF Composite Nanofibres. Appl. Sci., 10 (16), 1–12. DOI: 10.3390/app10165618
- Saghafi, H., Nikbakht, A., Mohammadi, R., & Zarouchas, D. (2021). The Thickness Effect of PSF Nanofibrous Mat on Fracture Toughness of Carbon/Epoxy Laminates. Materials (Basel)., 14 (13). DOI: 10.3390/ma14133469
- Santos, P., Silva, A. P., & Reis, P. N. B. (2023). Effect of Carbon Nanofibres on the Strain Rate and Interlaminar Shear Strength of Carbon/Epoxy Composites. Materials (Basel), 16 (12). DOI: 10.3390/ma16124332
- Maccaferri, E., Donne, M. D., Mazzocchetti, L., Benelli, T., Brugo, T. M., Zucchelli, A., & Giorgini, L. (2022). Rubber-Enhanced Polyamide Nanofibres for a Significant Improvement of CFRP Interlaminar Fracture Toughness. Sci. Rep., 12 (1), 1–16. DOI: 10.1038/s41598-022-25287-y
- Torre-Muruzabal, A., Daelemans, L., Van Assche, G., De Clerck, K., & Rahier, H. (2016). Creation of a Nanovascular Network by Electrospun Sacrificial Nanofibres for Self-Healing Applications and its Effect on the Flexural Properties of the Bulk Material. Polym. Test., 54, 78–83. DOI: 10.1016/j. polymertesting.2016.06.026
- Brugo, T. M., Maccaferri, E., Cocchi, D., Mazzocchetti, L., Giorgini, L., Fabiani, D., & Zucchelli, A. (2021). Self-Sensing Hybrid Composite Laminate by Piezoelectric Nanofibres Interleaving. Compos. Part B Eng., 212, 108673. DOI: 10.1016/j.compositesb.2021.108673
- Sanchaniya, J. V., Lasenko, I., Kanukuntala, S. P., Smogor, H., Viluma-Gudmona, A., Krasnikovs, A., … & Gobins, V. (2023). Mechanical and Thermal Characteristics of Annealed-Oriented PAN Nanofibres. Polymers (Basel), 15 (15), 3287. DOI: doi. org/10.3390/polym15153287
- Sanchaniya, J. V., Lasenko, I., Kanukuntla, S. P., Mannodi, A., Viluma-Gudmona, A., & Gobins, V. (2023). Preparation and Characterization of Non-Crimping Laminated Textile Composites Reinforced with Electrospun Nanofibres. Nanomaterials, 13 (13), 1949. DOI: 10.3390/nano13131949
- Sanchaniya, J. V., Lasenko, I., Gobins, V., & Kobeissi, A. (2024). A Finite Element Method for Determining the Mechanical Properties of Electrospun Nanofibrous Mats. Polym., 16 (6), 852. DOI: 10.3390/polym16060852
- Sanchaniya, J. V., Lasenko, I., Vijayan, V., Smogor, H., Gobins, V., Kebeissi, A., … & Goljandin, D. (2024). A Novel Method to Enhance the Mechanical Properties of Polyacrylonitrile Nanofibre Mats: An Experimental and Numerical Investigation. Polymers (Basel), 16 (7), 992. DOI: 10.3390/polym16070992