References
- Agarwal, S., Jangir, L. K., Rathore, K. S., Kumar, M., & Awasthi, K. (2019). Morphology-Dependent Structural and Optical Properties of ZnO Nanostructures. Applied Physics A, 125 (8), 553. DOI:10.1007/s00339-019-2852-x
- Zahoor, R., Jalil, A., Ilyas, S. Z., Ahmed, S., & Hassan, A. (2021). Optoelectronic and Solar Cell Applications of ZnO Nanostructures. Results in Surfaces and Interfaces, 2, 100003. DOI:10.1016/j. rsurfi.2021.100003
- Lin, C. C. (2018). Li-doped ZnO Piezoelectric Sensor for Touchscreen Applications. International Journal of Electronics and Electrical Engineering, 6 (4), 53–56. DOI:10.18178/ijeee.6.4.53-56
- Dahiya, A. S., Sporea, R. A., Poulin-Vittrant, G., & Alquier, D. (2019). Stability Evaluation of ZnO Nanosheet Based Source-Gated Transistors. Scientific Reports, 9 (1), 2979. DOI:10.1038/s41598-019-39833-8
- Wibowo, A., Marsudi, M. A., Amal, M. I., Ananda, M. B., Stephanie, R., Ardy, H., & Diguna, L. J. (2020). ZnO Nanostructured Materials for Emerging Solar Cell Applications. RSC Advances, 10 (70), 42838–42859. DOI:10.1039/d0ra07689a
- Han, Y., Guo, J., Luo, Q., & Ma, C. (2023). Solution-Processable Zinc Oxide for Printed Photovoltaics: Progress, Challenges, and Prospect. Advanced Energy & Sustainability Research, 4, 2200179. DOI:10.1002/aesr.202200179
- Manabeng, M., Mwankemwa, B. S., Ocaya, R. O., Motaung, T. E., & Malevu, T. D. (2022). A Review of the Impact of Zinc Oxide Nanostructure Morphology on Perovskite Solar Cell Performance. Processes, 10, 1803. DOI:10.3390/pr10091803
- Que, M., Lin, C., Sun, J., Chen, L., Sun, X., & Sun, Y. (2021). Progress in ZnO Nanosensors. Sensors, 21, 5502. DOI:10.3390/s21165502
- Krishna, K. G., Umadevi, G., Parne, S., & Nagaraju Pothukanuri, N. (2023). Zinc Oxide Based Gas Sensors And Their Derivatives: A Critical Review. Journal of Materials Chemistry C, 11, 3906–3925. DOI:10.1039/D4SC01030B
- Mendes, C. R., Dilarri, G., Forsan, C. F., Sapata, V. D. R., Lopes, P. R. M., Bueno de Moraes, P., … & Bidoia, E. D. (2023). Antibacterial Action and Target Mechanisms of Zinc Oxide Nanoparticles against Bacterial Pathogens. Scientific Reports, 12, 2658. DOI:10.1038/s41598-022-06657-y
- Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., … & Mohamad, D. (2015). Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-micro letters, 7 (3), 219–242. DOI:10.1007/s40820-015-0040-x
- Sun, Y., Zhang, W., Li, Q., Liu, H., & Wang, X. (2023). Preparations and Applications of Zinc Oxide Based Photocatalytic Materials. Advanced Sensor and Energy Materials, 2 (3), 100069. DOI:10.1016/j.asems.2023.100069
- Sharma, D. K., Shukla, S., Sharma, K. K., & Kumar, V. (2020). A Review on ZnO: Fundamental Properties and Applications. Materials Today: Proceedings, 49. 3028–3035. DOI:10.1016/j.matpr.2020.10.238
- Sauvik Raha, S., & Ahmaruzzaman, Md. (2022). ZnO Nanostructured Materials and their Potential Applications: Progress, Challenges and Perspectives. Nanoscale Advances, 4, 1868–1925. DOI:10.1039/D1NA00880C
- Hasnidawani, J. N., Azlina, H. N., Norita, H., Bonnia, N. N., Ratim, S., & Ali, E. S. (2016). Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chemistry, 19, 211–216. DOI:10.1016/j.proche.2016.03.095
- Kim, S.-W., Fujita, S., Park, H.-K., Yang, B., Kim, H.-K., & Yoon, D. H. (2006). Growth of ZnO Nanostructures in a Chemical Vapor Deposition Process. Journal of Crystal Growth, 292 (2), 306–310. DOI:10.1016/j. jcrysgro.2006.04.026
- Bagheri, S., Chandrappa, K. G., & Hamid, S. B. A. (2013). Facile Synthesis of Nano-Sized ZnO by Direct Precipitation Method. Der Pharma Chemica, 5 (3), 265–270.
- Patella, B., Moukri, N., Regalbuto, G., Cipollina, C.,Pace, E., Di Vincenzo, S. … & Inguanta, R. (2022). Electrochemical Synthesis of Zinc Oxide Nanostructures on Flexible Substrate and Application as an Electrochemical Immunoglobulin-G Immunosensor. Materials, 15, 713. DOI:10.3390/ma15030713
- Manzano, C. V., Philippe, L., & Serrà, A. (2022). Recent Progress in the Electrochemical Deposition of ZnO Nanowires: Synthesis Approaches and Applications. Critical Reviews in Solid State and Materials Sciences, 47(5), p. 772–805. DOI:10.1080/10408436.2021.1989663
- Wojnarowicz, J., Chudoba, T., & Lojkowski, W. (2020). A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies. Nanomaterials (Basel, Switzerland), 10(6), 1086. DOI:10.3390/nano10061086
- Ahammed, K. R., Ashaduzzaman, M., Paul, S. C., Nath, M. R., Bhowmik, S., Saha, O., … & Aka, T. D. (2020). Microwave Assisted Synthesis of Zinc Oxide (ZnO) Nanoparticles in a Noble Approach: Utilization for Antibacterial and Photocatalytic Activity. SN Applied Sciences, 2(5), 955. DOI:10.1007/s42452-020-2762-8
- Ejsmont, A., & Goscianska, J. (2023). Hydrothermal Synthesis of ZnO Superstructures with Controlled Morphology via Temperature and pH Optimization. Materials, 16 (4), 1641. DOI:10.3390/ma16041641
- Mohan, S., Vellakkat, M., Aravind, A., & U, R. (2020). Hydrothermal Synthesis and Characterization of Zinc Oxide Nanoparticles of Various Shapes under Different Reaction Conditions. Nano Express, 1 (3), 030028. DOI:10.1088/2632-959X/abc813
- Barad, H.-N., Kwon, H., Alarcón-Correa, M., & Fischer, P. (2021). Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects. ACS Nano, 15 (4), 5861–5875. DOI:10.1021/acsnano.0c09999
- Mihailova, I., Krasovska, M., Sledevskis, E., Gerbreders, V., Mizers, V, … & Ogurcovs, A.(2023). Selective Patterned Growth of ZnO Nanoneedle Arrays. Latvian Journal of Physics and Technical Sciences, 60 (6), 35–53. DOI:10.2478/lpts-2023-0035
- Shaw, J. E., Stavrinou, P. N., & Anthopoulos, T. D. (2012). On-Demand Patterning of Nanostructured Pentacene Transistors by Scanning Thermal Lithography. Advanced Materials, 25 (4), 552–558. DOI:10.1002/adma.201202877
- Demontis, V., Zannier, V., Sorba, L., & Rossella, F. (2021). Surface Nano-Patterning for the Bottom-Up Growth of III-V Semiconductor Nanowire Ordered Arrays. Nanomaterials, 11, 2079. DOI:10.3390/nano11082079
- Wang, H., Jiménez-Calvo, P., Hepp, M., Isaacs, M. A., Ogolla, C. O., Below-Lutz, I., … & Strauss, V. (2023). Laser-Patterned Porous Carbon/ZnO Nanostructure Composites for Selective Room-Temperature Sensing of Volatile Organic Compounds. ACS Applied Nano Materials, 6 (2), 966–975. DOI:10.1021/acsanm.2c04348
- Chen, K., Thang, D. D., Ishii, S., Sugavaneshwa, R. P., & Nagao, T. (2015). Selective Patterned Growth of ZnO Nanowires/Nanosheets and their Photoluminescence Properties. Optical Materials Express, 5 (2), 353. doi:10.1364/ome.5.000353
- Tereshchenko, A., Bechelany, M., Viter, R., Khranovskyy, V., Smyntyna, V., Starodub, N., & Yakimova, R. (2016). Optical Biosensors Based on ZnO Nanostructures: Advantages and Perspectives. A review. Sensors and Actuators B: Chemical, 229, 664–677. doi:10.1016/j.snb.2016.01.099
- Sharma, A., Agrawal, A., Kumar, S., Awasthi, K. K., Awasthi, K., & Awasthi, A. (2021). Zinc Oxide Nanostructures–Based Biosensors. Nanostructured Zinc Oxide, Elsevier, 665–695. DOI:10.1016/B978-0-12-818900-9
- Kim, S., Kim, G. H., Woo, H., An, T., & Lim, G. (2019). Fabrication of a Novel Nanofluidic Device Featuring ZnO Nanochannels. ACS Omega, 5 (7), 3144–3150. DOI:10.1021/acsomega.9b02524
- Krishna, S. B. N., Jakmunee, J., Mishra, Y. K., & Jai Prakash, J. (2024). ZnO Based 0–3D Diverse Nano-Architectures, Films and Coatings for Biomedical Applications. Journal of Materials Chemistry B, 12, 2950–2984. DOI:10.1039/D4TB00184B
- Anang, F. E. B., Wei, X., Xu, J., Cain, M., Li, Z., Brand, U., & Peiner, E. (2024). Area-Selective Growth of Zinc Oxide Nanowire Arrays for Piezoelectric Energy Harvesting. Micromachines, 15, 261. DOI:10.3390/mi15020261
- Zheng, Z., Lim, Z., Peng, Y., You, L., Chen, L., & Wanf, J. (2013). General Route to ZnO Nanorod Arrays on Conducting Substrates via Galvanic-Cell-Based Approach. Scientific Reports, 3, 2434 DOI:10.1038/srep02434
- Gerbreders, V., Krasovska, M., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., … & Plaksenkova, I. (2021). Nanostructure-Based Electrochemical Sensor: Glyphosate Detection and the Analysis of Genetic Changes in Rye DNA. Surfaces and Interfaces, 26, 101332. DOI:10.1016/j.surfin.2021.101332
- Ferreira, S. H., Cunha, I., Pinto, J. V., Neto, J. P., Pereira, L., Fortunato, E., & Martins, R. (2021). UV-Responsive Screen-Printed Porous ZnO Nanostructures on Office Paper for Sustainable and Foldable Electronics. Chemosensors, 9, 192. DOI:10.3390/chemosensors9080192
- Papageorgiou, G. P., Karydas, A. G., Papageorgiou, G., Kantarelou, V., & Makarona, E. (2020). Controlled Synthesis of Periodic Arrays of ZnO Nanostructures Combining E-Beam Lithography and Solution-Based Processes Leveraged by Micro X-ray Fluorescence Spectroscopy. Micro and Nano Engineering, 8, 100063. DOI:10.1016/j.mne.2020.100063
- Chen, B., Lu, K., & Ramsburg, K. (2012). ZnO Submicrometer Rod Array by Soft Lithographic Micromolding with High Solid Loading Nanoparticle Suspension. Journal of the American Ceramic Society, 96 (1), 73–79. DOI:10.1111/jace.12069
- Tredici, I. G., Resmini, A., Yaghmaie, F., Irving, M., Maglia, F., & Anselmi-Tamburini, U. (2012). A Simple Two-Step Solution Chemistry Method for Synthesis of Micropatterned ZnO Nanorods Based on Metal-Loaded Hydrogels. Thin Solid Films, 526, 22–27. DOI:10.1016/j.tsf.2012.10.052
- Lee, H., Harden-Chaters, W., Han, S. D., Zhan, S., Li, B., Bang, S. Y., … & Kim, J. M. (2020). Nano-to-Micro porous Networks via Inkjet Printing of ZnO Nanoparticles /Graphene hybrid for Ultraviolet Photodetectors. ACS Applied Nano Materials, 3, 4454–4464. DOI:10.1021/acsanm.0c00558
- Fajardo, J., Garduno, S. I., & Estrada, M. (2020). Analysis of inkjet printing conditions for ZnO nanoparticles patterns towards the fabrication of fully printed thin film devices. In 2020 IEEE Latin America Electron Devices Conference (LAEDC), 25–28 February 2020, San José, Costa Rica. DOI:10.1109/laedc49063.2020.9073472
- López-Miranda, J. L., Sánchez B. L. E., Esparza, R., & Estévez, M. (2022). Self-Assembly of ZnO Nanoflowers Synthesized by a Green Approach with Enhanced Catalytic, and Antibacterial Properties. Materials Chemistry and Physics, 289, 126453. DOI:10.1016/j. matchemphys.2022.126453
- Chiu, W. S., Yaghoubi, A., Chia, M. Y., Khanis, N. H., Rahman, S. A., Khiew, P. S., & Chueh, Y.-L. (2014). Self-Assembly And Secondary Nucleation in ZnO Nanostructures Derived from a Lipophilic Precursor. CrystEngComm, 16 (27), 6003–6009. DOI:10.1039/c4ce00442f
- Fujiwara, H., Suzuki, T., Niyuki, R., & Sasaki, K. (2016). ZnO Nanorod Array Random Lasers Fabricated by a Laser-Induced Hydrothermal Synthesis. New Journal of Physics, 18 (10), 103046. DOI:10.1088/1367-2630/18/10/103046
- Rajab, F. H., Taha, R. M., Hadi, A. A., Khashan, K. S., & Mahdi, R. O. (2023). Laser Induced Hydrothermal Growth of ZnO Rods for UV Detector Application. Optical and Quantum Electronics, 55, 208. https://doi.org/10.1007/s11082-022-04473-2
- Georgiou, P., Kolokotronis, K., & Simitzis, J. (2009). Synthesis of ZnO Nanostructures by Hydrothermal Method. Journal of Nano Research, 6, 157–168. DOI:10.4028/www.scientific.net/jnanor.6.157
- Krasovska, M., Gerbreders, V., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal Synthesis of ZnO Nanostructures with Controllable Morphology Change. CrystEngComm., 22 (8), 1346–1358. DOI:10.1039/c9ce01556f
- Alavi, S. J., Khalili, N., Kazemi Oskuee, R., Verma, K. D., & Darroudi, M. (2015). Role of Polyethyleneimine (PEI) in Synthesis of Zinc Oxide Nanoparticles and their Cytotoxicity Effects. Ceramics International, 41 (8), 10222–10226. DOI:10.1016/j.ceramint.2015.04.129