Have a personal or library account? Click to login
Selective Laser-Assisted Patterning of Zno: Effects of Synthesis Parameters on Nanostructure Morphology Cover

Selective Laser-Assisted Patterning of Zno: Effects of Synthesis Parameters on Nanostructure Morphology

Open Access
|Nov 2024

References

  1. Agarwal, S., Jangir, L. K., Rathore, K. S., Kumar, M., & Awasthi, K. (2019). Morphology-Dependent Structural and Optical Properties of ZnO Nanostructures. Applied Physics A, 125 (8), 553. DOI:10.1007/s00339-019-2852-x
  2. Zahoor, R., Jalil, A., Ilyas, S. Z., Ahmed, S., & Hassan, A. (2021). Optoelectronic and Solar Cell Applications of ZnO Nanostructures. Results in Surfaces and Interfaces, 2, 100003. DOI:10.1016/j. rsurfi.2021.100003
  3. Lin, C. C. (2018). Li-doped ZnO Piezoelectric Sensor for Touchscreen Applications. International Journal of Electronics and Electrical Engineering, 6 (4), 53–56. DOI:10.18178/ijeee.6.4.53-56
  4. Dahiya, A. S., Sporea, R. A., Poulin-Vittrant, G., & Alquier, D. (2019). Stability Evaluation of ZnO Nanosheet Based Source-Gated Transistors. Scientific Reports, 9 (1), 2979. DOI:10.1038/s41598-019-39833-8
  5. Wibowo, A., Marsudi, M. A., Amal, M. I., Ananda, M. B., Stephanie, R., Ardy, H., & Diguna, L. J. (2020). ZnO Nanostructured Materials for Emerging Solar Cell Applications. RSC Advances, 10 (70), 42838–42859. DOI:10.1039/d0ra07689a
  6. Han, Y., Guo, J., Luo, Q., & Ma, C. (2023). Solution-Processable Zinc Oxide for Printed Photovoltaics: Progress, Challenges, and Prospect. Advanced Energy & Sustainability Research, 4, 2200179. DOI:10.1002/aesr.202200179
  7. Manabeng, M., Mwankemwa, B. S., Ocaya, R. O., Motaung, T. E., & Malevu, T. D. (2022). A Review of the Impact of Zinc Oxide Nanostructure Morphology on Perovskite Solar Cell Performance. Processes, 10, 1803. DOI:10.3390/pr10091803
  8. Que, M., Lin, C., Sun, J., Chen, L., Sun, X., & Sun, Y. (2021). Progress in ZnO Nanosensors. Sensors, 21, 5502. DOI:10.3390/s21165502
  9. Krishna, K. G., Umadevi, G., Parne, S., & Nagaraju Pothukanuri, N. (2023). Zinc Oxide Based Gas Sensors And Their Derivatives: A Critical Review. Journal of Materials Chemistry C, 11, 3906–3925. DOI:10.1039/D4SC01030B
  10. Mendes, C. R., Dilarri, G., Forsan, C. F., Sapata, V. D. R., Lopes, P. R. M., Bueno de Moraes, P., … & Bidoia, E. D. (2023). Antibacterial Action and Target Mechanisms of Zinc Oxide Nanoparticles against Bacterial Pathogens. Scientific Reports, 12, 2658. DOI:10.1038/s41598-022-06657-y
  11. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., … & Mohamad, D. (2015). Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-micro letters, 7 (3), 219–242. DOI:10.1007/s40820-015-0040-x
  12. Sun, Y., Zhang, W., Li, Q., Liu, H., & Wang, X. (2023). Preparations and Applications of Zinc Oxide Based Photocatalytic Materials. Advanced Sensor and Energy Materials, 2 (3), 100069. DOI:10.1016/j.asems.2023.100069
  13. Sharma, D. K., Shukla, S., Sharma, K. K., & Kumar, V. (2020). A Review on ZnO: Fundamental Properties and Applications. Materials Today: Proceedings, 49. 3028–3035. DOI:10.1016/j.matpr.2020.10.238
  14. Sauvik Raha, S., & Ahmaruzzaman, Md. (2022). ZnO Nanostructured Materials and their Potential Applications: Progress, Challenges and Perspectives. Nanoscale Advances, 4, 1868–1925. DOI:10.1039/D1NA00880C
  15. Hasnidawani, J. N., Azlina, H. N., Norita, H., Bonnia, N. N., Ratim, S., & Ali, E. S. (2016). Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chemistry, 19, 211–216. DOI:10.1016/j.proche.2016.03.095
  16. Kim, S.-W., Fujita, S., Park, H.-K., Yang, B., Kim, H.-K., & Yoon, D. H. (2006). Growth of ZnO Nanostructures in a Chemical Vapor Deposition Process. Journal of Crystal Growth, 292 (2), 306–310. DOI:10.1016/j. jcrysgro.2006.04.026
  17. Bagheri, S., Chandrappa, K. G., & Hamid, S. B. A. (2013). Facile Synthesis of Nano-Sized ZnO by Direct Precipitation Method. Der Pharma Chemica, 5 (3), 265–270.
  18. Patella, B., Moukri, N., Regalbuto, G., Cipollina, C.,Pace, E., Di Vincenzo, S. … & Inguanta, R. (2022). Electrochemical Synthesis of Zinc Oxide Nanostructures on Flexible Substrate and Application as an Electrochemical Immunoglobulin-G Immunosensor. Materials, 15, 713. DOI:10.3390/ma15030713
  19. Manzano, C. V., Philippe, L., & Serrà, A. (2022). Recent Progress in the Electrochemical Deposition of ZnO Nanowires: Synthesis Approaches and Applications. Critical Reviews in Solid State and Materials Sciences, 47(5), p. 772–805. DOI:10.1080/10408436.2021.1989663
  20. Wojnarowicz, J., Chudoba, T., & Lojkowski, W. (2020). A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies. Nanomaterials (Basel, Switzerland), 10(6), 1086. DOI:10.3390/nano10061086
  21. Ahammed, K. R., Ashaduzzaman, M., Paul, S. C., Nath, M. R., Bhowmik, S., Saha, O., … & Aka, T. D. (2020). Microwave Assisted Synthesis of Zinc Oxide (ZnO) Nanoparticles in a Noble Approach: Utilization for Antibacterial and Photocatalytic Activity. SN Applied Sciences, 2(5), 955. DOI:10.1007/s42452-020-2762-8
  22. Ejsmont, A., & Goscianska, J. (2023). Hydrothermal Synthesis of ZnO Superstructures with Controlled Morphology via Temperature and pH Optimization. Materials, 16 (4), 1641. DOI:10.3390/ma16041641
  23. Mohan, S., Vellakkat, M., Aravind, A., & U, R. (2020). Hydrothermal Synthesis and Characterization of Zinc Oxide Nanoparticles of Various Shapes under Different Reaction Conditions. Nano Express, 1 (3), 030028. DOI:10.1088/2632-959X/abc813
  24. Barad, H.-N., Kwon, H., Alarcón-Correa, M., & Fischer, P. (2021). Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects. ACS Nano, 15 (4), 5861–5875. DOI:10.1021/acsnano.0c09999
  25. Mihailova, I., Krasovska, M., Sledevskis, E., Gerbreders, V., Mizers, V, … & Ogurcovs, A.(2023). Selective Patterned Growth of ZnO Nanoneedle Arrays. Latvian Journal of Physics and Technical Sciences, 60 (6), 35–53. DOI:10.2478/lpts-2023-0035
  26. Shaw, J. E., Stavrinou, P. N., & Anthopoulos, T. D. (2012). On-Demand Patterning of Nanostructured Pentacene Transistors by Scanning Thermal Lithography. Advanced Materials, 25 (4), 552–558. DOI:10.1002/adma.201202877
  27. Demontis, V., Zannier, V., Sorba, L., & Rossella, F. (2021). Surface Nano-Patterning for the Bottom-Up Growth of III-V Semiconductor Nanowire Ordered Arrays. Nanomaterials, 11, 2079. DOI:10.3390/nano11082079
  28. Wang, H., Jiménez-Calvo, P., Hepp, M., Isaacs, M. A., Ogolla, C. O., Below-Lutz, I., … & Strauss, V. (2023). Laser-Patterned Porous Carbon/ZnO Nanostructure Composites for Selective Room-Temperature Sensing of Volatile Organic Compounds. ACS Applied Nano Materials, 6 (2), 966–975. DOI:10.1021/acsanm.2c04348
  29. Chen, K., Thang, D. D., Ishii, S., Sugavaneshwa, R. P., & Nagao, T. (2015). Selective Patterned Growth of ZnO Nanowires/Nanosheets and their Photoluminescence Properties. Optical Materials Express, 5 (2), 353. doi:10.1364/ome.5.000353
  30. Tereshchenko, A., Bechelany, M., Viter, R., Khranovskyy, V., Smyntyna, V., Starodub, N., & Yakimova, R. (2016). Optical Biosensors Based on ZnO Nanostructures: Advantages and Perspectives. A review. Sensors and Actuators B: Chemical, 229, 664–677. doi:10.1016/j.snb.2016.01.099
  31. Sharma, A., Agrawal, A., Kumar, S., Awasthi, K. K., Awasthi, K., & Awasthi, A. (2021). Zinc Oxide Nanostructures–Based Biosensors. Nanostructured Zinc Oxide, Elsevier, 665–695. DOI:10.1016/B978-0-12-818900-9
  32. Kim, S., Kim, G. H., Woo, H., An, T., & Lim, G. (2019). Fabrication of a Novel Nanofluidic Device Featuring ZnO Nanochannels. ACS Omega, 5 (7), 3144–3150. DOI:10.1021/acsomega.9b02524
  33. Krishna, S. B. N., Jakmunee, J., Mishra, Y. K., & Jai Prakash, J. (2024). ZnO Based 0–3D Diverse Nano-Architectures, Films and Coatings for Biomedical Applications. Journal of Materials Chemistry B, 12, 2950–2984. DOI:10.1039/D4TB00184B
  34. Anang, F. E. B., Wei, X., Xu, J., Cain, M., Li, Z., Brand, U., & Peiner, E. (2024). Area-Selective Growth of Zinc Oxide Nanowire Arrays for Piezoelectric Energy Harvesting. Micromachines, 15, 261. DOI:10.3390/mi15020261
  35. Zheng, Z., Lim, Z., Peng, Y., You, L., Chen, L., & Wanf, J. (2013). General Route to ZnO Nanorod Arrays on Conducting Substrates via Galvanic-Cell-Based Approach. Scientific Reports, 3, 2434 DOI:10.1038/srep02434
  36. Gerbreders, V., Krasovska, M., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., … & Plaksenkova, I. (2021). Nanostructure-Based Electrochemical Sensor: Glyphosate Detection and the Analysis of Genetic Changes in Rye DNA. Surfaces and Interfaces, 26, 101332. DOI:10.1016/j.surfin.2021.101332
  37. Ferreira, S. H., Cunha, I., Pinto, J. V., Neto, J. P., Pereira, L., Fortunato, E., & Martins, R. (2021). UV-Responsive Screen-Printed Porous ZnO Nanostructures on Office Paper for Sustainable and Foldable Electronics. Chemosensors, 9, 192. DOI:10.3390/chemosensors9080192
  38. Papageorgiou, G. P., Karydas, A. G., Papageorgiou, G., Kantarelou, V., & Makarona, E. (2020). Controlled Synthesis of Periodic Arrays of ZnO Nanostructures Combining E-Beam Lithography and Solution-Based Processes Leveraged by Micro X-ray Fluorescence Spectroscopy. Micro and Nano Engineering, 8, 100063. DOI:10.1016/j.mne.2020.100063
  39. Chen, B., Lu, K., & Ramsburg, K. (2012). ZnO Submicrometer Rod Array by Soft Lithographic Micromolding with High Solid Loading Nanoparticle Suspension. Journal of the American Ceramic Society, 96 (1), 73–79. DOI:10.1111/jace.12069
  40. Tredici, I. G., Resmini, A., Yaghmaie, F., Irving, M., Maglia, F., & Anselmi-Tamburini, U. (2012). A Simple Two-Step Solution Chemistry Method for Synthesis of Micropatterned ZnO Nanorods Based on Metal-Loaded Hydrogels. Thin Solid Films, 526, 22–27. DOI:10.1016/j.tsf.2012.10.052
  41. Lee, H., Harden-Chaters, W., Han, S. D., Zhan, S., Li, B., Bang, S. Y., … & Kim, J. M. (2020). Nano-to-Micro porous Networks via Inkjet Printing of ZnO Nanoparticles /Graphene hybrid for Ultraviolet Photodetectors. ACS Applied Nano Materials, 3, 4454–4464. DOI:10.1021/acsanm.0c00558
  42. Fajardo, J., Garduno, S. I., & Estrada, M. (2020). Analysis of inkjet printing conditions for ZnO nanoparticles patterns towards the fabrication of fully printed thin film devices. In 2020 IEEE Latin America Electron Devices Conference (LAEDC), 25–28 February 2020, San José, Costa Rica. DOI:10.1109/laedc49063.2020.9073472
  43. López-Miranda, J. L., Sánchez B. L. E., Esparza, R., & Estévez, M. (2022). Self-Assembly of ZnO Nanoflowers Synthesized by a Green Approach with Enhanced Catalytic, and Antibacterial Properties. Materials Chemistry and Physics, 289, 126453. DOI:10.1016/j. matchemphys.2022.126453
  44. Chiu, W. S., Yaghoubi, A., Chia, M. Y., Khanis, N. H., Rahman, S. A., Khiew, P. S., & Chueh, Y.-L. (2014). Self-Assembly And Secondary Nucleation in ZnO Nanostructures Derived from a Lipophilic Precursor. CrystEngComm, 16 (27), 6003–6009. DOI:10.1039/c4ce00442f
  45. Fujiwara, H., Suzuki, T., Niyuki, R., & Sasaki, K. (2016). ZnO Nanorod Array Random Lasers Fabricated by a Laser-Induced Hydrothermal Synthesis. New Journal of Physics, 18 (10), 103046. DOI:10.1088/1367-2630/18/10/103046
  46. Rajab, F. H., Taha, R. M., Hadi, A. A., Khashan, K. S., & Mahdi, R. O. (2023). Laser Induced Hydrothermal Growth of ZnO Rods for UV Detector Application. Optical and Quantum Electronics, 55, 208. https://doi.org/10.1007/s11082-022-04473-2
  47. Georgiou, P., Kolokotronis, K., & Simitzis, J. (2009). Synthesis of ZnO Nanostructures by Hydrothermal Method. Journal of Nano Research, 6, 157–168. DOI:10.4028/www.scientific.net/jnanor.6.157
  48. Krasovska, M., Gerbreders, V., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal Synthesis of ZnO Nanostructures with Controllable Morphology Change. CrystEngComm., 22 (8), 1346–1358. DOI:10.1039/c9ce01556f
  49. Alavi, S. J., Khalili, N., Kazemi Oskuee, R., Verma, K. D., & Darroudi, M. (2015). Role of Polyethyleneimine (PEI) in Synthesis of Zinc Oxide Nanoparticles and their Cytotoxicity Effects. Ceramics International, 41 (8), 10222–10226. DOI:10.1016/j.ceramint.2015.04.129
DOI: https://doi.org/10.2478/lpts-2024-0042 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 41 - 58
Published on: Nov 30, 2024
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2024 V. Gerbreders, M. Krasovska, I. Mihailova, V. Mizers, E. Sledevskis, A. Bulanovs, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.