References
- Kirby, R. (2011). Minimising Harbour Siltation-findings of PIANC Working Group 43. Ocean Dynamics, 61 (2–3), 233–244. https://doi.org/10.1007/s10236-010-0336-9
- Lojek, O., Goseberg, N., & Schlurmann, T. (2021). Projecting Hydro-Morphodynamic Impacts of Planned Layout Changes for a Coastal Harbor. Journal of Waterway, Port, Coastal and Ocean Engineering, 147 (6), 05021013. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000666
- Kuang, C. P., Li, H. Y., Huang, G. W., Han, X. J., Zou, Q. P., & Song, H. L. (2022). Sediment Transport and Morphological Responses of a Silty Coast to a Cold Front Event in the Southwest Bohai Bay of China. Estuarine, Coastal and Shelf Science, 278, 108106. https://doi.org/10.1016/j.ecss.2022.108106
- Diab, H., Younes, R., & Lafon, P. (2017). Survey of Research on the Optimal Design of Sea Harbours. International Journal of Naval Architecture and Ocean Engineering, 9 (4), 460–472. https://doi.org/10.1016/j.ijnaoe.2016.12.004
- Bell, M. G. H., Pan, J. J., Teye, C., Cheung, K. F., & Perera, S. (2020). An Entropy Maximizing Approach to the Ferry Network Design Problem. Transportation Research Part B-Methodological, 132, 15–28. https://doi.org/10.1016/j.trb.2019.02.006
- Männikus, R., Soomere, T., & Najafzadeh, F. (2022). Refraction May Redirect Waves from Multiple Directions into a Harbour: A Case Study in the Gulf of Riga, Eastern Baltic Sea. Estonian Journal of Earth Sciences, 71 (2), 80−88. https://doi.org/10.3176/earth.2022.06
- Najafzadeh, F., Jankowski, M. Z., Giudici, A., Männikus, R., Suursaar, Ü., Viška, M., & Soomere, T. (2024). Spatiotemporal Variability of Wave Climate in the Gulf of Riga. Oceanologia. Early access. https://doi.org/10.1016/j.oceano.2023.11.001.
- Soomere, T. (2003). Anisotropy of Wind and Wave Regimes in the Baltic Proper. Journal of Sea Research, 49 (4), 305–316. https://doi.org/10.1016/S1385-1101(03)00034-0
- Männikus, R., Soomere, T., & Kudryavtseva, N. (2019). Identification of Mechanisms that Drive Water Level Extremes from In Situ Measurements in the Gulf of Riga during 1961−2017. Continental Shelf Research, 182, 22−36. https://doi.org/10.1016/j.csr.2019.05.014.
- Hanes, D.M., Erikson, & L.H. (2013). The Significance of Ultra-Refracted Surface Gravity Waves on Sheltered Coasts, with Application to San Francisco Bay. Estuarine, Coastal and Shelf Science, 133, 129–136. https://doi.org/10.1016/j.ecss.2013.08.022
- Orviku K. (2018). Rannad ja rannikud [Beaches and Shores]. Tallinn University Publishers. [in Estonian].
- Karimpour, A. (2013). OCEANLYZ, Ocean Wave Analyzing Toolbox. User Manual. Available at http://www.arashkarimpour.com/download.html
- Alari, V., Björkqvist, J.-V., Kaldvee, Mölder, K., Rikka, S., Kask-Korb, A., … & Tõnisson, H. (2022). LainePoiss®—A Lightweight and Ice-Resistant Wave Buoy. Journal of Atmospheric and Oceanic Technology, 39 (5), 573–594. https://doi.org/10.1175/JTECH-D-21-0091.1
- Eelsalu, M., Org, M., & Soomere, T. (2014). Visually observed wave climate in the Gulf of Riga. In The 6th IEEE/OES Baltic Symposium Measuring and Modeling of Multi-Scale Interactions in the Marine Environment, May 26–29, Tallinn, Estonia. IEEE Conference Publications, 6887829. https://doi.org/10.1109/BALTIC.2014.6887829
- Booij, N., Ris, R.C., & Holthuijsen, L.H. (1999). A Third-Generation Wave Model For Coastal Regions: 1. Model Description and Validation. Journal of Geophysical Research-Oceans, 104 (C4), 7649–7666. https://doi.org/10.1029/98JC02622.
- The SWAN team. (2021). SWAN Scientific and Technical Documentation. Technical Report. Delft University of Technology. Available at http://swanmodel.sourceforge.net/download/zip/swantech.pdf
- Baltic Sea Hydrographic Commission. (2013). Baltic Sea Bathymetry Database Version 0.9.3. Available at http://data.bshc.pro/
- Shore Protection Manual. (1984). Coastal Engineering Research Center. Department of the Army. US Army Corps of Engineers, Washington DC.
- Kamphuis, J.W. (2010). Introduction to Coastal Engineering and Management (2nd ed.). Advanced Series of Ocean Engineering, 30. World Scientific, New Jersey. https://doi.org/10.1142/7021
- Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., … & Thépaut, J-N. (2018). ERA5 Hourly Data on Pressure Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available at https://doi.org/10.24381/cds.bd0915c6
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., … & Thepaut, J. N. (2020). The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 (730), 1999–2049. https://doi.org/10.1002/qj.3803
- ECMWF. (2006). IFS Documentation – Cy41r2. Operational Implementation 8 March 2016. Part IV: Physical Processes. Available at https://www.ecmwf.int/en/elibrary/79697-if
- Soomere, T., & Keevallik, S. (2001). Anisotropy of Moderate and Strong Winds in the Baltic Proper. Proceeding of the Estonian Academy of Sciences. Engineering, 7 (1), 35–49. https://doi.org/10.3176/eng.2001.1.04
- Männikus, R., Soomere, T., & Viška, M. (2020). Variations in the Mean, Seasonal and Extreme Water Level on the Latvian Coast, the Eastern Baltic Sea, during 1961–2018. Estuarine, Coastal and Shelf Science, 245, 106827. https://doi.org/10.1016/j.ecss.2020.106827
- Coles, S. (2004). An Introduction to Statistical Modeling of Extreme Values (3rd printing). Springer, London.
- Holthuijsen, L. H. (1999). Waves in Oceanic and Coastal Waters. Cambridge University Press, Cambridge.
- Männikus, R., & Soomere, T. (2023). Directional Variation of Return Periods of Water Level Extremes in Moonsund and in the Gulf of Riga. Baltic Sea. Regional Studies in Marine Science, 57, 102741. https://doi.org/10.1016/j.rsma.2022.102741
- Wang, W., Pákozdi, C., Kamath, A., Fouques, S., & Bihs, H. (2022). A Flexible Fully Nonlinear Potential Flow Model for Wave Propagation over the Complex Topography of the Norwegian Coast. Applied Ocean Research, 122, 103103. https://doi.org/10.1016/j.apor.2022.103103
- Wang, W., Pákozdi, C., Kamath, A., & Bihs, H. (2023). Fully Nonlinear Phase-Resolved Wave Modelling in the Norwegian Fjords for Floating Bridges along the E39 Coastal Highway. Journal of Ocean Engineering and Marine Energy, 9, 567–586. https://doi.org/10.1007/s40722-023-00284-z
- Bihs, H., Kamath, A., Alagan Chella, M., Aggarwal, A., & Arntsen, Ø. A. (2016). A New Level Set Numerical Wave Tank with Improved Density Interpolation for Complex Wave Hydrodynamics. Computers & Fluids, 140, 191–208. https://doi.org/10.1016/j.compfluid.2016.09.012
- Van der Vorst, H. (1992). BiCGStab: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal of Scientific Computing, 13 (2), 631–644. https://doi.org/10.1137/0913035
- Jiang, G. S., & Shu, C. W. (1996). Efficient Implementation of Weighted ENO Schemes. Journal of Computational Physics, 126 (1), 202–228. https://doi.org/10.1006/jcph.1996.0130
- Shu, C.W., & Osher, S. (1988). Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes. Journal of Computational Physics, 77 (2), 439–471. https://doi.org/10.1016/0021-9991(88)90177-5
- Larsen, J., & Dancy, H. (1983). Open Boundaries in Short Wave Simulations – A New Approach. Coastal Engineering, 7 (3), 285–297. https://doi.org/10.1016/0378-3839(83)90022-4
- Mazzaretto, O.M., Menéndez, M., & Lobeto, H. (2022). A Global Evaluation of the JONSWAP Spectra Suitability on Coastal Areas. Ocean Engineering, 266 (2), 112756. https://doi.org/10.1016/j.oceaneng.2022.112756.
- Eelsalu, M., Soomere, T., Pindsoo, K., & Lagemaa, P. (2014). Ensemble Approach for Projections of Return Periods of Extreme Water Levels in Estonian Waters. Continental Shelf Research, 91, 201–210. https://doi.org/10.1016/j.csr.2014.09.012
- Johansson, M., Boman, H., Kahma, K. K., & Launiainen, J. (2001). Trends in Sea Level Variability in the Baltic Sea. Boreal Environment Research, 6 (3), 159–179.
- Soomere, T., & Pindsoo, K. (2016). Spatial Variability in the Trends in Extreme Storm Surges and Weekly-Scale High Water Levels in the Eastern Baltic Sea. Continental Shelf Research, 115, 53–64. https://doi.org/10.1016/j.csr.2015.12.016
- Kozanis, S., Christofides, A., Mamassis, N., Efstratiadis, A., & Koutsoyiannis, D. (2010). Hydrognomon – Open Source Software for the Analysis of Hydrological Data. Geophysical Research Abstracts, 12, 12419. http://dx.doi.org/10.13140/RG.2.2.21350.83527
- Goda, Y. (2010). Random Seas and Design of Maritime Structures (3rd ed.). Advanced Series on Ocean Engineering 33. World Scientific, New Jersey. https://doi.org/10.1142/7425
- Männikus, T., Soomere, T., & Suursaar, Ü. (2024). How do Simple Wave Models Perform Compared with Sophisticated Models and Measurements in the Eastern Baltic Sea? Estonian Journal of Earth Sciences, 73 (2).
- Ranasinghe, R., & Turner, I. L. (2006). Shoreline Response to Submerged Structures: A Review. Coastal Engineering, 53 (1), 65–79. https://doi.org/10.1016/j.coastaleng.2005.08.003
- Fitri, A., Hashim, R., Abolfathi, S., & Maulud, K. N. A. (2019). Dynamics of Sediment Transport and Erosion-Deposition Patterns in the Locality of a Detached Low-Crested Breakwater on a Cohesive Coast. Water, 11 (8). https://doi.org/10.3390/w11081721