Have a personal or library account? Click to login

Modelling П-Shaped Concentrating Optics for Lcpv Solar Cells Using Fresnel Lens

Open Access
|Oct 2024

References

  1. Lewis, N. S., & Nocera, D. G. (2006). Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proceedings of the National Academy of Sciences, 103 (43), 15729–15735. https://doi.org/10.1073/pnas.0603395103
  2. Kannan, N., & Vakeesan, D. (2016). Solar Energy for Future World: A Review. Renewable and Sustainable Energy Reviews, 62, 1092–1105. https://doi.org/10.1016/j.rser.2016.05.022
  3. Jatoi, A. R., Samo, S. R., & Jakhrani, A. Q. (2021). Performance Evaluation of Various Photovoltaic Module Technologies at Nawabshah Pakistan. International Journal of Renewable Energy Development, 10 (1), 97. https://doi.org/10.14710/ijred.2021.32352
  4. Yamaguchi, M. (2003). III–V Compound Multi-Junction Solar Cells: Present and Future. Solar energy materials and solar cells, 75 (1–2), 261–269. https://doi.org/10.1016/S0927-0248(02)00168-X
  5. Klugmann-Radziemska, E. (2023). Environmental Assessment of Solar Cell Materials. Ecological Chemistry and Engineering S, 30 (1), 23–35. https://doi.org/10.2478/eces-2023-0002
  6. Kafui, A. D., Seres, I., & Farkas, I. (2019). Efficiency Comparison of Different Photovoltaic Modules. Acta Technologica Agriculturae, 22 (1), 5–11. https://doi.org/10.2478/ata-2019-0002
  7. Michael, J. J., Iqbal, S. M., Iniyan, S., & Goic, R. (2018). Enhanced Electrical Performance in a Solar Photovoltaic Module Using V-Trough Concentrators. Energy, 148, 605–613. https://doi.org/10.1016/j.energy.2018.01.101
  8. Al-Ghezi, M. K., Ahmed, R. T., & Chaichan, M. T. (2022). The Influence of Temperature and Irradiance on Performance of the Photovoltaic Panel in the Middle of Iraq. International Journal of Renewable Energy Development, 11 (2), 501. https://doi.org/10.14710/ijred.2022.43713
  9. Finot, M., & MacDonald, B. (2011). Significant Cost Reduction through New Optical, Thermal, and Structural Design for a Medium-CPV System. High and Low Concentrator Systems for Solar Electric Applications VI, 8108, 86–95. SPIE. https://doi.org/10.1117/12.894187
  10. Bilal, M., Arbab, M. N., Afridi, M. Z. U. A., & Khattak, A. (2016). Increasing the Output Power and Efficiency of Solar Panel by Using Concentrator Photovoltaics (CPV). International Journal of Engineering Works, 3 (12), 98–102.
  11. Zainulabdeen, F. S., Al-Hamdani, A. H., Karam, G. S., & Ali, J. H. (2019). Improving the Performance Efficiency of Solar Panel by Using Flat Mirror Concentrator. AIP Conference Proceedings, 2190 (1). AIP Publishing. https://doi.org/10.1063/1.5138540
  12. Parupudi, R. V., Singh, H., & Kolokotroni, M. (2020). Low Concentrating Photovoltaics (LCPV) for Buildings and their Performance Analyses. Applied Energy, 279, 115839. https://doi.org/10.1016/j.apenergy.2020.115839
  13. Hasan, A., Sarwar, J., & Shah, A. H. (2018). Concentrated Photovoltaic: A Review of Thermal Aspects, Challenges and Opportunities. Renewable and Sustainable Energy Reviews, 94, 835–852. https://doi.org/10.1016/j.rser.2018.06.014
  14. Maka, A. O., & O’Donovan, T. S. (2020). A Review of Thermal Load and Performance Characterisation of a High Concentrating Photovoltaic (HCPV) Solar Receiver Assembly. Solar Energy, 206, 35–51. https://doi.org/10.1016/j.solener.2020.05.022
  15. Valera, Á., Rodrigo, P. M., Almonacid, F., & Fernández, E. F. (2021). Efficiency Improvement of Passively Cooled Micro-Scale Hybrid CPV-TEG Systems at Ultra-High Concentration Levels. Energy Conversion and Management, 244, 114521. https://doi.org/10.1016/j.enconman.2021.114521
  16. Baig, H., Heasman, K. C., Sarmah, N., & Mallick, T. (2012). Solar Cells Design for Low and Medium Concentrating Photovoltaic Systems. AIP Conference Proceedings, 1477 (1), 98–101. American Institute of Physics. https://doi.org/10.1063/1.4753843
  17. Payet, J., & Greffe, T. (2019). Life Cycle Assessment of New High Concentration Photovoltaic (HCPV) Modules and Multi-Junction Cells. Energies, 12 (15), 2916. https://doi.org/10.3390/en12152916
  18. Grasso, G., Righetti, A., Ubaldi, M. C., Morichetti, F., & Pietralunga, S. M. (2012). Competitiveness of Stationary Planar Low Concentration Photovoltaic Modules Using Silicon Cells: A Focus on Concentrating Optics. Solar Energy, 86 (6), 1725–1732. https://doi.org/10.1016/j.solener.2012.03.015
  19. Philipps, S. P., Bett, A. W., Horowitz, K., & Kurtz, S. (2015). Current Status of Concentrator Photovoltaic (CPV) Technology (No. NREL/TP-5J00-65130). National Renewable Energy Lab. (NREL), Golden, CO (United States).
  20. Hamza, M., Kechiche, O. B. H. B., Barkaoui, B., & Sammouda, H. (2017, March). Performance comparison between commercial mono-crystalline and poly-crystalline PV modules under LCPV conditions. In 2017 International Conference on Green Energy Conversion Systems (GECS) (pp. 1–6). IEEE. https://doi.org/10.1109/GECS.2017.8066261
  21. Shanks, K., Senthilarasu, S., & Mallick, T. K. (2016). Optics for Concentrating Photovoltaics: Trends, Limits and Opportunities for Materials and Design. Renewable and Sustainable Energy Reviews, 60, 394–407. https://doi.org/10.1016/j.rser.2016.01.089
  22. Amanlou, Y., Hashjin, T. T., Ghobadian, B., Najafi, G., & Mamat, R. (2016). A Comprehensive Review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems. Renewable and Sustainable Energy Reviews, 60, 1430–1441. https://doi.org/10.1016/j.rser.2016.03.032
  23. Baig, H., Montecucco, A., Siviter, J., Li, W., Paul, M., Sweet, T., ... & Mallick, T. (2016). Indoor Characterization of a Reflective Type 3D LCPV System. AIP Conference Proceedings, 1766 (1). AIP Publishing. https://doi.org/10.1063/1.4962070
  24. Schuetz, M. A., Shell, K. A., Brown, S. A., Reinbolt, G. S., French, R. H., & Davis, R. J. (2012). Design and Construction of a ~ 7× Low-Concentration Photovoltaic System Based on Compound Parabolic Concentrators. IEEE Journal of Photovoltaics, 2 (3), 382–386. https://doi.org/10.1109/JPHOTOV.2012.2186283
  25. Mallick, T. K., & Eames, P. C. (2008). Electrical Performance Evaluation of Low‐ Concentrating Non‐imaging Photovoltaic Concentrator. Progress in Photovoltaics: Research and Applications, 16 (5), 389–398. https://doi.org/10.1002/pip.819
  26. Sonneveld, P. J., Swinkels, G. L. A. M., Van Tuijl, B. A. J., Janssen, H. J. J., Campen, J., & Bot, G. P. A. (2011). Performance of a Concentrated Photovoltaic Energy System with Static Linear Fresnel Lenses. Solar Energy, 85 (3), 432–442. https://doi.org/10.1016/j.solener.2010.12.001
  27. Cvetkovic, A., Mohedano, R., Gonzalez, O., Zamora, P., Benitez, P., Fernandez, P. M., ... & Miñano, J. C. (2011). Performance Modeling of Fresnel‐based CPV Systems: Effects of Deformations under Real Operation Conditions. AIP Conference Proceedings, 1407 (1), 74–78. American Institute of Physics. https://doi.org/10.1063/1.3658298
  28. Xie, W. T., Dai, Y. J., Wang, R. Z., & Sumathy, K. (2011). Concentrated Solar Energy Applications Using Fresnel Lenses: A Review. Renewable and Sustainable Energy Reviews, 15 (6), 2588–2606. https://doi.org/10.1016/j.rser.2011.03.031
  29. El Himer, S., Al Ayane, S., & Ahaitouf, A. (2020, September). Optical Modeling and Performance Design of a Fresnel Lens for CPV Units. IOP Conference Series: Materials Science and Engineering, 937 (1), 012025. IOP Publishing. https://doi.org/10.1088/1757-899X/937/1/012025
  30. Renzi, M., Cioccolanti, L., Barazza, G., Egidi, L., & Comodi, G. (2017). Design and Experimental Test of Refractive Secondary Optics on the Electrical Performance of a 3-Junction Cell Used in CPV Systems. Applied Energy, 185, 233–243. https://doi.org/10.1016/j.apenergy.2016.10.064
  31. El Himer, S., El-Yahyaoui, S., Mechaqrane, A., & Ahaitouf, A. (2017). Comparative Study of Two CPV Optical Concentrators, Using a Fresnel Lens as Primary Optical Element. IOP Conference Series: Materials Science and Engineering, 186 (1), 012033. IOP Publishing. https://doi.org/10.1088/1757-899X/186/1/012033
  32. Ferrer-Rodríguez, J. P., Baig, H., Fernández, E. F., Almonacid, F., Mallick, T., & Pérez-Higueras, P. (2017). Optical Modeling of Four Fresnel-based High-CPV Units. Solar Energy, 155, 805–815. https://doi.org/10.1016/j.solener.2017.07.027
  33. Dosymbetova, G., Mekhilef, S., Saymbetov, A., Nurgaliyev, M., Kapparova, A., Manakov, S., ... & Koshkarbay, N. (2022). Modeling and Simulation of Silicon Solar Cells under Low Concentration Conditions. Energies, 15 (24), 9404. https://doi.org/10.3390/en15249404
  34. Wiesenfarth, M., Steiner, M., Wolf, J., Schmidt, T., & Bett, A. W. (2014). Investigation of Different Fresnel Lens Designs and Methods to Determine the Optical Efficiency. AIP Conference Proceedings, 1616 (1), 97–101. American Institute of Physics. https://doi.org/10.1063/1.4897037
  35. Jing, L., Liu, H., Wang, Y., Xu, W., Zhang, H., & Lu, Z. (2014). Design and Optimization of Fresnel Lens for High Concentration Photovoltaic System. International Journal of Photoenergy. https://doi.org/10.1155/2014/539891
  36. Yeh, N. (2010). Analysis of Spectrum Distribution and Optical Losses under Fresnel Lenses. Renewable and Sustainable Energy Reviews, 14 (9), 2926–2935. https://doi.org/10.1016/j.rser.2010.07.016
  37. Drury, E., Lopez, A., Denholm, P., & Margolis, R. (2014). Relative Performance of Tracking versus Fixed Tilt Photovoltaic Systems in the USA. Progress in Photovoltaics: Research and Applications, 22 (12), 1302–1315. https://doi.org/10.1002/pip.2373
  38. Kumar, V., Shrivastava, R. L., & Untawale, S. P. (2015). Fresnel lens: A promising Alternative of Reflectors in Concentrated Solar Power. Renewable and Sustainable Energy Reviews, 44, 376–390. https://doi.org/10.1016/j.rser.2014.12.006
  39. Gol, A. E., & Ščasný, M. (2023). Techno-Economic Analysis of Fixed versus Sun-Tracking Solar Panels. International Journal of Renewable Energy Development, 12 (3), 615. https://doi.org/10.14710/ijred.2023.50165
  40. Akisawa, A., Hiramatsu, M., & Ozaki, K. (2012). Design of Dome-Shaped Non-imaging Fresnel Lenses Taking Chromatic Aberration into Account. Solar Energy, 86 (3), 877–885. https://doi.org/10.1016/j.solener.2011.12.017
  41. Goldstein, A., & Gordon, J. M. (2011). Tailored Solar Optics for Maximal Optical Tolerance and Concentration. Solar Energy Materials and Solar Cells, 95 (2), 624–629. https://doi.org/10.1016/j.solmat.2010.09.029
  42. El Himer, S., Ahaitouf, A., El-Yahyaoui, S., Mechaqrane, A., & Ouagazzaden, A. (2012). A Comparative of Four Secondary Optical Elements for CPV Systems. AIP Conference Proceedings, 30003. https://doi.org/10.1063/1.5053502
  43. Pham, T. T., Vu, N. H., & Shin, S. (2019). Novel Design of Primary Optical Elements Based on a Linear Fresnel Lens for Concentrator Photovoltaic Technology. Energies, 12 (7), 1209. https://doi.org/10.3390/en12071209
  44. Bione, J., Vilela, O. C., & Fraidenraich, N. (2004). Comparison of the Performance of PV Water Pumping Systems Driven by fixed, Tracking and V-Trough Generators. Solar Energy, 76 (6), 703–711. https://doi.org/10.1016/j.solener.2004.01.003
  45. Sumathi, V., Jayapragash, R., Bakshi, A., & Akella, P. K. (2017). Solar Tracking Methods to Maximize PV System Output–A Review of the Methods Adopted in Recent Decade. Renewable and Sustainable Energy Reviews, 74, 130–138. https://doi.org/10.1016/j.rser.2017.02.013
  46. Larico, E. R. A., & Gutierrez, A. C. (2022). Solar Tracking System with Photovoltaic Cells: Experimental Analysis at High Altitudes. International Journal of Renewable Energy Development, 11 (3), 630. https://doi.org/10.14710/ijred.2022.43572
  47. Renno, C., & Perone, A. (2021). Experimental Modeling of the Optical and Energy Performances of a Point-Focus CPV System Applied to a Residential User. Energy, 15, 119156. https://doi.org/10.1016/j.energy.2020.119156
DOI: https://doi.org/10.2478/lpts-2024-0039 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 101 - 116
Published on: Oct 1, 2024
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2024 A. Kapparova, S. Orynbassar, G. Dosymbetova, D. Almen, E. Yershov, A. Saymbetov, M. Nurgaliyev, N. Algazin, A. Sharipbay, D. Zhastalapova, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.